| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhcmpl | Structured version Visualization version GIF version | ||
| Description: Lemma used for derivation of the completeness axiom ax-hcompl 31104 from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhlm.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| hhlm.2 | ⊢ 𝐷 = (IndMet‘𝑈) |
| hhlm.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| hhcmpl.c | ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) |
| Ref | Expression |
|---|---|
| hhcmpl | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhcmpl.c | . . . 4 ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) | |
| 2 | 1 | anim1ci 616 | . . 3 ⊢ ((𝐹 ∈ (Cau‘𝐷) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥)) |
| 3 | elin 3927 | . . 3 ⊢ (𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘𝐷) ∧ 𝐹 ∈ ( ℋ ↑m ℕ))) | |
| 4 | r19.42v 3167 | . . 3 ⊢ (∃𝑥 ∈ ℋ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥) ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | . 2 ⊢ (𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
| 6 | hhlm.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 7 | hhlm.2 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 8 | 6, 7 | hhcau 31100 | . . 3 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
| 9 | 8 | eleq2i 2820 | . 2 ⊢ (𝐹 ∈ Cauchy ↔ 𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))) |
| 10 | hhlm.3 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 11 | 6, 7, 10 | hhlm 31101 | . . . . 5 ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) |
| 12 | 11 | breqi 5108 | . . . 4 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ 𝐹((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ))𝑥) |
| 13 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 14 | 13 | brresi 5948 | . . . 4 ⊢ (𝐹((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
| 15 | 12, 14 | bitri 275 | . . 3 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
| 16 | 15 | rexbii 3076 | . 2 ⊢ (∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃𝑥 ∈ ℋ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
| 17 | 5, 9, 16 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3910 〈cop 4591 class class class wbr 5102 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℕcn 12162 MetOpencmopn 21230 ⇝𝑡clm 23089 Cauccau 25129 IndMetcims 30493 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 normℎcno 30825 Cauchyccauold 30828 ⇝𝑣 chli 30829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 ax-hilex 30901 ax-hfvadd 30902 ax-hvcom 30903 ax-hvass 30904 ax-hv0cl 30905 ax-hvaddid 30906 ax-hfvmul 30907 ax-hvmulid 30908 ax-hvmulass 30909 ax-hvdistr1 30910 ax-hvdistr2 30911 ax-hvmul0 30912 ax-hfi 30981 ax-his1 30984 ax-his2 30985 ax-his3 30986 ax-his4 30987 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22757 df-topon 22774 df-bases 22809 df-lm 23092 df-cau 25132 df-grpo 30395 df-gid 30396 df-ginv 30397 df-gdiv 30398 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-vs 30501 df-nmcv 30502 df-ims 30503 df-hnorm 30870 df-hvsub 30873 df-hlim 30874 df-hcau 30875 |
| This theorem is referenced by: hilcompl 31103 |
| Copyright terms: Public domain | W3C validator |