Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhcmpl | Structured version Visualization version GIF version |
Description: Lemma used for derivation of the completeness axiom ax-hcompl 29089 from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhlm.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
hhlm.2 | ⊢ 𝐷 = (IndMet‘𝑈) |
hhlm.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
hhcmpl.c | ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) |
Ref | Expression |
---|---|
hhcmpl | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhcmpl.c | . . . 4 ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) | |
2 | 1 | anim1ci 618 | . . 3 ⊢ ((𝐹 ∈ (Cau‘𝐷) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥)) |
3 | elin 3876 | . . 3 ⊢ (𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘𝐷) ∧ 𝐹 ∈ ( ℋ ↑m ℕ))) | |
4 | r19.42v 3268 | . . 3 ⊢ (∃𝑥 ∈ ℋ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥) ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥)) | |
5 | 2, 3, 4 | 3imtr4i 295 | . 2 ⊢ (𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
6 | hhlm.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
7 | hhlm.2 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
8 | 6, 7 | hhcau 29085 | . . 3 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
9 | 8 | eleq2i 2843 | . 2 ⊢ (𝐹 ∈ Cauchy ↔ 𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))) |
10 | hhlm.3 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
11 | 6, 7, 10 | hhlm 29086 | . . . . 5 ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) |
12 | 11 | breqi 5041 | . . . 4 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ 𝐹((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ))𝑥) |
13 | vex 3413 | . . . . 5 ⊢ 𝑥 ∈ V | |
14 | 13 | brresi 5836 | . . . 4 ⊢ (𝐹((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
15 | 12, 14 | bitri 278 | . . 3 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
16 | 15 | rexbii 3175 | . 2 ⊢ (∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃𝑥 ∈ ℋ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
17 | 5, 9, 16 | 3imtr4i 295 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 ∩ cin 3859 〈cop 4531 class class class wbr 5035 ↾ cres 5529 ‘cfv 6339 (class class class)co 7155 ↑m cmap 8421 ℕcn 11679 MetOpencmopn 20161 ⇝𝑡clm 21931 Cauccau 23958 IndMetcims 28478 ℋchba 28806 +ℎ cva 28807 ·ℎ csm 28808 normℎcno 28810 Cauchyccauold 28813 ⇝𝑣 chli 28814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 ax-addf 10659 ax-mulf 10660 ax-hilex 28886 ax-hfvadd 28887 ax-hvcom 28888 ax-hvass 28889 ax-hv0cl 28890 ax-hvaddid 28891 ax-hfvmul 28892 ax-hvmulid 28893 ax-hvmulass 28894 ax-hvdistr1 28895 ax-hvdistr2 28896 ax-hvmul0 28897 ax-hfi 28966 ax-his1 28969 ax-his2 28970 ax-his3 28971 ax-his4 28972 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-map 8423 df-pm 8424 df-en 8533 df-dom 8534 df-sdom 8535 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-n0 11940 df-z 12026 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-topgen 16780 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-top 21599 df-topon 21616 df-bases 21651 df-lm 21934 df-cau 23961 df-grpo 28380 df-gid 28381 df-ginv 28382 df-gdiv 28383 df-ablo 28432 df-vc 28446 df-nv 28479 df-va 28482 df-ba 28483 df-sm 28484 df-0v 28485 df-vs 28486 df-nmcv 28487 df-ims 28488 df-hnorm 28855 df-hvsub 28858 df-hlim 28859 df-hcau 28860 |
This theorem is referenced by: hilcompl 29088 |
Copyright terms: Public domain | W3C validator |