Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhcmpl | Structured version Visualization version GIF version |
Description: Lemma used for derivation of the completeness axiom ax-hcompl 29592 from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhlm.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
hhlm.2 | ⊢ 𝐷 = (IndMet‘𝑈) |
hhlm.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
hhcmpl.c | ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) |
Ref | Expression |
---|---|
hhcmpl | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhcmpl.c | . . . 4 ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) | |
2 | 1 | anim1ci 615 | . . 3 ⊢ ((𝐹 ∈ (Cau‘𝐷) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥)) |
3 | elin 3905 | . . 3 ⊢ (𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘𝐷) ∧ 𝐹 ∈ ( ℋ ↑m ℕ))) | |
4 | r19.42v 3181 | . . 3 ⊢ (∃𝑥 ∈ ℋ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥) ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥)) | |
5 | 2, 3, 4 | 3imtr4i 291 | . 2 ⊢ (𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
6 | hhlm.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
7 | hhlm.2 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
8 | 6, 7 | hhcau 29588 | . . 3 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
9 | 8 | eleq2i 2825 | . 2 ⊢ (𝐹 ∈ Cauchy ↔ 𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))) |
10 | hhlm.3 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
11 | 6, 7, 10 | hhlm 29589 | . . . . 5 ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) |
12 | 11 | breqi 5083 | . . . 4 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ 𝐹((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ))𝑥) |
13 | vex 3438 | . . . . 5 ⊢ 𝑥 ∈ V | |
14 | 13 | brresi 5903 | . . . 4 ⊢ (𝐹((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
15 | 12, 14 | bitri 274 | . . 3 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
16 | 15 | rexbii 3091 | . 2 ⊢ (∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃𝑥 ∈ ℋ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘𝐽)𝑥)) |
17 | 5, 9, 16 | 3imtr4i 291 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∃wrex 3068 ∩ cin 3888 〈cop 4570 class class class wbr 5077 ↾ cres 5593 ‘cfv 6447 (class class class)co 7295 ↑m cmap 8635 ℕcn 12001 MetOpencmopn 20615 ⇝𝑡clm 22405 Cauccau 24445 IndMetcims 28981 ℋchba 29309 +ℎ cva 29310 ·ℎ csm 29311 normℎcno 29313 Cauchyccauold 29316 ⇝𝑣 chli 29317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 ax-addf 10978 ax-mulf 10979 ax-hilex 29389 ax-hfvadd 29390 ax-hvcom 29391 ax-hvass 29392 ax-hv0cl 29393 ax-hvaddid 29394 ax-hfvmul 29395 ax-hvmulid 29396 ax-hvmulass 29397 ax-hvdistr1 29398 ax-hvdistr2 29399 ax-hvmul0 29400 ax-hfi 29469 ax-his1 29472 ax-his2 29473 ax-his3 29474 ax-his4 29475 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-map 8637 df-pm 8638 df-en 8754 df-dom 8755 df-sdom 8756 df-sup 9229 df-inf 9230 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-n0 12262 df-z 12348 df-uz 12611 df-q 12717 df-rp 12759 df-xneg 12876 df-xadd 12877 df-xmul 12878 df-seq 13750 df-exp 13811 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-topgen 17182 df-psmet 20617 df-xmet 20618 df-met 20619 df-bl 20620 df-mopn 20621 df-top 22071 df-topon 22088 df-bases 22124 df-lm 22408 df-cau 24448 df-grpo 28883 df-gid 28884 df-ginv 28885 df-gdiv 28886 df-ablo 28935 df-vc 28949 df-nv 28982 df-va 28985 df-ba 28986 df-sm 28987 df-0v 28988 df-vs 28989 df-nmcv 28990 df-ims 28991 df-hnorm 29358 df-hvsub 29361 df-hlim 29362 df-hcau 29363 |
This theorem is referenced by: hilcompl 29591 |
Copyright terms: Public domain | W3C validator |