MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardnueq0 Structured version   Visualization version   GIF version

Theorem cardnueq0 9924
Description: The empty set is the only numerable set with cardinality zero. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardnueq0 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cardnueq0
StepHypRef Expression
1 cardid2 9913 . . . 4 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
21ensymd 8979 . . 3 (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴))
3 breq2 5114 . . . 4 ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ ∅))
4 en0 8992 . . . 4 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
53, 4bitrdi 287 . . 3 ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 = ∅))
62, 5syl5ibcom 245 . 2 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ → 𝐴 = ∅))
7 fveq2 6861 . . 3 (𝐴 = ∅ → (card‘𝐴) = (card‘∅))
8 card0 9918 . . 3 (card‘∅) = ∅
97, 8eqtrdi 2781 . 2 (𝐴 = ∅ → (card‘𝐴) = ∅)
106, 9impbid1 225 1 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  c0 4299   class class class wbr 5110  dom cdm 5641  cfv 6514  cen 8918  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-card 9899
This theorem is referenced by:  carddomi2  9930  cfeq0  10216  cfsuc  10217  sdom2en01  10262
  Copyright terms: Public domain W3C validator