Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cardnueq0 | Structured version Visualization version GIF version |
Description: The empty set is the only numerable set with cardinality zero. (Contributed by Mario Carneiro, 7-Jan-2013.) |
Ref | Expression |
---|---|
cardnueq0 | ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 9759 | . . . 4 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
2 | 1 | ensymd 8826 | . . 3 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
3 | breq2 5085 | . . . 4 ⊢ ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ ∅)) | |
4 | en0 8838 | . . . 4 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
5 | 3, 4 | bitrdi 287 | . . 3 ⊢ ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 = ∅)) |
6 | 2, 5 | syl5ibcom 245 | . 2 ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ → 𝐴 = ∅)) |
7 | fveq2 6804 | . . 3 ⊢ (𝐴 = ∅ → (card‘𝐴) = (card‘∅)) | |
8 | card0 9764 | . . 3 ⊢ (card‘∅) = ∅ | |
9 | 7, 8 | eqtrdi 2792 | . 2 ⊢ (𝐴 = ∅ → (card‘𝐴) = ∅) |
10 | 6, 9 | impbid1 224 | 1 ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 ∅c0 4262 class class class wbr 5081 dom cdm 5600 ‘cfv 6458 ≈ cen 8761 cardccrd 9741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-card 9745 |
This theorem is referenced by: carddomi2 9776 cfeq0 10062 cfsuc 10063 sdom2en01 10108 |
Copyright terms: Public domain | W3C validator |