| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardnueq0 | Structured version Visualization version GIF version | ||
| Description: The empty set is the only numerable set with cardinality zero. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardnueq0 | ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 9856 | . . . 4 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 2 | 1 | ensymd 8937 | . . 3 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
| 3 | breq2 5099 | . . . 4 ⊢ ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ ∅)) | |
| 4 | en0 8950 | . . . 4 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 5 | 3, 4 | bitrdi 287 | . . 3 ⊢ ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 = ∅)) |
| 6 | 2, 5 | syl5ibcom 245 | . 2 ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ → 𝐴 = ∅)) |
| 7 | fveq2 6831 | . . 3 ⊢ (𝐴 = ∅ → (card‘𝐴) = (card‘∅)) | |
| 8 | card0 9861 | . . 3 ⊢ (card‘∅) = ∅ | |
| 9 | 7, 8 | eqtrdi 2784 | . 2 ⊢ (𝐴 = ∅ → (card‘𝐴) = ∅) |
| 10 | 6, 9 | impbid1 225 | 1 ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∅c0 4284 class class class wbr 5095 dom cdm 5621 ‘cfv 6489 ≈ cen 8875 cardccrd 9838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8879 df-card 9842 |
| This theorem is referenced by: carddomi2 9873 cfeq0 10157 cfsuc 10158 sdom2en01 10203 |
| Copyright terms: Public domain | W3C validator |