MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardnueq0 Structured version   Visualization version   GIF version

Theorem cardnueq0 9867
Description: The empty set is the only numerable set with cardinality zero. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardnueq0 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cardnueq0
StepHypRef Expression
1 cardid2 9856 . . . 4 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
21ensymd 8937 . . 3 (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴))
3 breq2 5099 . . . 4 ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ ∅))
4 en0 8950 . . . 4 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
53, 4bitrdi 287 . . 3 ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 = ∅))
62, 5syl5ibcom 245 . 2 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ → 𝐴 = ∅))
7 fveq2 6831 . . 3 (𝐴 = ∅ → (card‘𝐴) = (card‘∅))
8 card0 9861 . . 3 (card‘∅) = ∅
97, 8eqtrdi 2784 . 2 (𝐴 = ∅ → (card‘𝐴) = ∅)
106, 9impbid1 225 1 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  c0 4284   class class class wbr 5095  dom cdm 5621  cfv 6489  cen 8875  cardccrd 9838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-er 8631  df-en 8879  df-card 9842
This theorem is referenced by:  carddomi2  9873  cfeq0  10157  cfsuc  10158  sdom2en01  10203
  Copyright terms: Public domain W3C validator