| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardnueq0 | Structured version Visualization version GIF version | ||
| Description: The empty set is the only numerable set with cardinality zero. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardnueq0 | ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 9838 | . . . 4 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 2 | 1 | ensymd 8922 | . . 3 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
| 3 | breq2 5093 | . . . 4 ⊢ ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ ∅)) | |
| 4 | en0 8935 | . . . 4 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 5 | 3, 4 | bitrdi 287 | . . 3 ⊢ ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 = ∅)) |
| 6 | 2, 5 | syl5ibcom 245 | . 2 ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ → 𝐴 = ∅)) |
| 7 | fveq2 6817 | . . 3 ⊢ (𝐴 = ∅ → (card‘𝐴) = (card‘∅)) | |
| 8 | card0 9843 | . . 3 ⊢ (card‘∅) = ∅ | |
| 9 | 7, 8 | eqtrdi 2781 | . 2 ⊢ (𝐴 = ∅ → (card‘𝐴) = ∅) |
| 10 | 6, 9 | impbid1 225 | 1 ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 ∅c0 4281 class class class wbr 5089 dom cdm 5614 ‘cfv 6477 ≈ cen 8861 cardccrd 9820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-er 8617 df-en 8865 df-card 9824 |
| This theorem is referenced by: carddomi2 9855 cfeq0 10139 cfsuc 10140 sdom2en01 10185 |
| Copyright terms: Public domain | W3C validator |