MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardnueq0 Structured version   Visualization version   GIF version

Theorem cardnueq0 9959
Description: The empty set is the only numerable set with cardinality zero. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardnueq0 (𝐴 ∈ dom card β†’ ((cardβ€˜π΄) = βˆ… ↔ 𝐴 = βˆ…))

Proof of Theorem cardnueq0
StepHypRef Expression
1 cardid2 9948 . . . 4 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
21ensymd 9001 . . 3 (𝐴 ∈ dom card β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
3 breq2 5153 . . . 4 ((cardβ€˜π΄) = βˆ… β†’ (𝐴 β‰ˆ (cardβ€˜π΄) ↔ 𝐴 β‰ˆ βˆ…))
4 en0 9013 . . . 4 (𝐴 β‰ˆ βˆ… ↔ 𝐴 = βˆ…)
53, 4bitrdi 287 . . 3 ((cardβ€˜π΄) = βˆ… β†’ (𝐴 β‰ˆ (cardβ€˜π΄) ↔ 𝐴 = βˆ…))
62, 5syl5ibcom 244 . 2 (𝐴 ∈ dom card β†’ ((cardβ€˜π΄) = βˆ… β†’ 𝐴 = βˆ…))
7 fveq2 6892 . . 3 (𝐴 = βˆ… β†’ (cardβ€˜π΄) = (cardβ€˜βˆ…))
8 card0 9953 . . 3 (cardβ€˜βˆ…) = βˆ…
97, 8eqtrdi 2789 . 2 (𝐴 = βˆ… β†’ (cardβ€˜π΄) = βˆ…)
106, 9impbid1 224 1 (𝐴 ∈ dom card β†’ ((cardβ€˜π΄) = βˆ… ↔ 𝐴 = βˆ…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1542   ∈ wcel 2107  βˆ…c0 4323   class class class wbr 5149  dom cdm 5677  β€˜cfv 6544   β‰ˆ cen 8936  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8703  df-en 8940  df-card 9934
This theorem is referenced by:  carddomi2  9965  cfeq0  10251  cfsuc  10252  sdom2en01  10297
  Copyright terms: Public domain W3C validator