![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardnueq0 | Structured version Visualization version GIF version |
Description: The empty set is the only numerable set with cardinality zero. (Contributed by Mario Carneiro, 7-Jan-2013.) |
Ref | Expression |
---|---|
cardnueq0 | ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 9954 | . . . 4 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
2 | 1 | ensymd 9007 | . . 3 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
3 | breq2 5152 | . . . 4 ⊢ ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ ∅)) | |
4 | en0 9019 | . . . 4 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
5 | 3, 4 | bitrdi 287 | . . 3 ⊢ ((card‘𝐴) = ∅ → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 = ∅)) |
6 | 2, 5 | syl5ibcom 244 | . 2 ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ → 𝐴 = ∅)) |
7 | fveq2 6891 | . . 3 ⊢ (𝐴 = ∅ → (card‘𝐴) = (card‘∅)) | |
8 | card0 9959 | . . 3 ⊢ (card‘∅) = ∅ | |
9 | 7, 8 | eqtrdi 2787 | . 2 ⊢ (𝐴 = ∅ → (card‘𝐴) = ∅) |
10 | 6, 9 | impbid1 224 | 1 ⊢ (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∅c0 4322 class class class wbr 5148 dom cdm 5676 ‘cfv 6543 ≈ cen 8942 cardccrd 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8709 df-en 8946 df-card 9940 |
This theorem is referenced by: carddomi2 9971 cfeq0 10257 cfsuc 10258 sdom2en01 10303 |
Copyright terms: Public domain | W3C validator |