MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardeq0 Structured version   Visualization version   GIF version

Theorem cardeq0 9952
Description: Only the empty set has cardinality zero. (Contributed by NM, 23-Apr-2004.)
Assertion
Ref Expression
cardeq0 (𝐴𝑉 → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cardeq0
StepHypRef Expression
1 0ex 5187 . . 3 ∅ ∈ V
2 carden 9951 . . 3 ((𝐴𝑉 ∧ ∅ ∈ V) → ((card‘𝐴) = (card‘∅) ↔ 𝐴 ≈ ∅))
31, 2mpan2 689 . 2 (𝐴𝑉 → ((card‘𝐴) = (card‘∅) ↔ 𝐴 ≈ ∅))
4 card0 9365 . . 3 (card‘∅) = ∅
54eqeq2i 2833 . 2 ((card‘𝐴) = (card‘∅) ↔ (card‘𝐴) = ∅)
6 en0 8550 . 2 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
73, 5, 63bitr3g 315 1 (𝐴𝑉 → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  Vcvv 3473  c0 4269   class class class wbr 5042  cfv 6331  cen 8484  cardccrd 9342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-ac2 9863
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-wrecs 7925  df-recs 7986  df-er 8267  df-en 8488  df-card 9346  df-ac 9520
This theorem is referenced by:  tskcard  10181
  Copyright terms: Public domain W3C validator