Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22gb Structured version   Visualization version   GIF version

Theorem cdleme22gb 38045
Description: Utility lemma for Lemma E in [Crawley] p. 115. (Contributed by NM, 5-Dec-2012.)
Hypotheses
Ref Expression
cdleme18d.l = (le‘𝐾)
cdleme18d.j = (join‘𝐾)
cdleme18d.m = (meet‘𝐾)
cdleme18d.a 𝐴 = (Atoms‘𝐾)
cdleme18d.h 𝐻 = (LHyp‘𝐾)
cdleme18d.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme18d.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme18d.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
cdleme22.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdleme22gb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐺𝐵)

Proof of Theorem cdleme22gb
StepHypRef Expression
1 cdleme18d.g . 2 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
2 simp1l 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
32hllatd 37115 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
4 simp2l 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
5 simp2r 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
6 cdleme22.b . . . . 5 𝐵 = (Base‘𝐾)
7 cdleme18d.j . . . . 5 = (join‘𝐾)
8 cdleme18d.a . . . . 5 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 37118 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
102, 4, 5, 9syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) ∈ 𝐵)
11 simp1 1138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp3r 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
13 cdleme18d.l . . . . . 6 = (le‘𝐾)
14 cdleme18d.m . . . . . 6 = (meet‘𝐾)
15 cdleme18d.h . . . . . 6 𝐻 = (LHyp‘𝐾)
16 cdleme18d.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
17 cdleme18d.f . . . . . 6 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
1813, 7, 14, 8, 15, 16, 17, 6cdleme1b 37977 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → 𝐹𝐵)
1911, 4, 5, 12, 18syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐹𝐵)
20 simp3l 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
216, 7, 8hlatjcl 37118 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ 𝐵)
222, 20, 12, 21syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 𝑆) ∈ 𝐵)
23 simp1r 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑊𝐻)
246, 15lhpbase 37749 . . . . . 6 (𝑊𝐻𝑊𝐵)
2523, 24syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑊𝐵)
266, 14latmcl 17946 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑅 𝑆) 𝑊) ∈ 𝐵)
273, 22, 25, 26syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑅 𝑆) 𝑊) ∈ 𝐵)
286, 7latjcl 17945 . . . 4 ((𝐾 ∈ Lat ∧ 𝐹𝐵 ∧ ((𝑅 𝑆) 𝑊) ∈ 𝐵) → (𝐹 ((𝑅 𝑆) 𝑊)) ∈ 𝐵)
293, 19, 27, 28syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝐹 ((𝑅 𝑆) 𝑊)) ∈ 𝐵)
306, 14latmcl 17946 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝐹 ((𝑅 𝑆) 𝑊)) ∈ 𝐵) → ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) ∈ 𝐵)
313, 10, 29, 30syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) ∈ 𝐵)
321, 31eqeltrid 2842 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐺𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  joincjn 17818  meetcmee 17819  Latclat 17937  Atomscatm 37014  HLchlt 37101  LHypclh 37735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-lat 17938  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-lhyp 37739
This theorem is referenced by:  cdleme25a  38104  cdleme25dN  38107
  Copyright terms: Public domain W3C validator