![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climcn1lem | Structured version Visualization version GIF version |
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
climcn1lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climcn1lem.2 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climcn1lem.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climcn1lem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climcn1lem.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climcn1lem.7 | ⊢ 𝐻:ℂ⟶ℂ |
climcn1lem.8 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
climcn1lem.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) |
Ref | Expression |
---|---|
climcn1lem | ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climcn1lem.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climcn1lem.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climcn1lem.2 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climcl 15532 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | climcn1lem.7 | . . . 4 ⊢ 𝐻:ℂ⟶ℂ | |
7 | 6 | ffvelcdmi 7103 | . . 3 ⊢ (𝑧 ∈ ℂ → (𝐻‘𝑧) ∈ ℂ) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐻‘𝑧) ∈ ℂ) |
9 | climcn1lem.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
10 | climcn1lem.8 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) | |
11 | 5, 10 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
12 | climcn1lem.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
13 | climcn1lem.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) | |
14 | 1, 2, 5, 8, 3, 9, 11, 12, 13 | climcn1 15625 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 < clt 11293 − cmin 11490 ℤcz 12611 ℤ≥cuz 12876 ℝ+crp 13032 abscabs 15270 ⇝ cli 15517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-neg 11493 df-z 12612 df-uz 12877 df-clim 15521 |
This theorem is referenced by: climabs 15637 climcj 15638 climre 15639 climim 15640 sinccvglem 35657 |
Copyright terms: Public domain | W3C validator |