MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcn1lem Structured version   Visualization version   GIF version

Theorem climcn1lem 15649
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climcn1lem.1 𝑍 = (ℤ𝑀)
climcn1lem.2 (𝜑𝐹𝐴)
climcn1lem.4 (𝜑𝐺𝑊)
climcn1lem.5 (𝜑𝑀 ∈ ℤ)
climcn1lem.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climcn1lem.7 𝐻:ℂ⟶ℂ
climcn1lem.8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
climcn1lem.9 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))
Assertion
Ref Expression
climcn1lem (𝜑𝐺 ⇝ (𝐻𝐴))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝑘,𝐹,𝑦,𝑧   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑍,𝑦   𝑘,𝐻,𝑥,𝑦,𝑧   𝑘,𝑀
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑍(𝑥,𝑧)

Proof of Theorem climcn1lem
StepHypRef Expression
1 climcn1lem.1 . 2 𝑍 = (ℤ𝑀)
2 climcn1lem.5 . 2 (𝜑𝑀 ∈ ℤ)
3 climcn1lem.2 . . 3 (𝜑𝐹𝐴)
4 climcl 15545 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
53, 4syl 17 . 2 (𝜑𝐴 ∈ ℂ)
6 climcn1lem.7 . . . 4 𝐻:ℂ⟶ℂ
76ffvelcdmi 7117 . . 3 (𝑧 ∈ ℂ → (𝐻𝑧) ∈ ℂ)
87adantl 481 . 2 ((𝜑𝑧 ∈ ℂ) → (𝐻𝑧) ∈ ℂ)
9 climcn1lem.4 . 2 (𝜑𝐺𝑊)
10 climcn1lem.8 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
115, 10sylan 579 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
12 climcn1lem.6 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
13 climcn1lem.9 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))
141, 2, 5, 8, 3, 9, 11, 12, 13climcn1 15638 1 (𝜑𝐺 ⇝ (𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cc 11182   < clt 11324  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-z 12640  df-uz 12904  df-clim 15534
This theorem is referenced by:  climabs  15650  climcj  15651  climre  15652  climim  15653  sinccvglem  35640
  Copyright terms: Public domain W3C validator