![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climcn1lem | Structured version Visualization version GIF version |
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
climcn1lem.1 | β’ π = (β€β₯βπ) |
climcn1lem.2 | β’ (π β πΉ β π΄) |
climcn1lem.4 | β’ (π β πΊ β π) |
climcn1lem.5 | β’ (π β π β β€) |
climcn1lem.6 | β’ ((π β§ π β π) β (πΉβπ) β β) |
climcn1lem.7 | β’ π»:ββΆβ |
climcn1lem.8 | β’ ((π΄ β β β§ π₯ β β+) β βπ¦ β β+ βπ§ β β ((absβ(π§ β π΄)) < π¦ β (absβ((π»βπ§) β (π»βπ΄))) < π₯)) |
climcn1lem.9 | β’ ((π β§ π β π) β (πΊβπ) = (π»β(πΉβπ))) |
Ref | Expression |
---|---|
climcn1lem | β’ (π β πΊ β (π»βπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climcn1lem.1 | . 2 β’ π = (β€β₯βπ) | |
2 | climcn1lem.5 | . 2 β’ (π β π β β€) | |
3 | climcn1lem.2 | . . 3 β’ (π β πΉ β π΄) | |
4 | climcl 15439 | . . 3 β’ (πΉ β π΄ β π΄ β β) | |
5 | 3, 4 | syl 17 | . 2 β’ (π β π΄ β β) |
6 | climcn1lem.7 | . . . 4 β’ π»:ββΆβ | |
7 | 6 | ffvelcdmi 7082 | . . 3 β’ (π§ β β β (π»βπ§) β β) |
8 | 7 | adantl 482 | . 2 β’ ((π β§ π§ β β) β (π»βπ§) β β) |
9 | climcn1lem.4 | . 2 β’ (π β πΊ β π) | |
10 | climcn1lem.8 | . . 3 β’ ((π΄ β β β§ π₯ β β+) β βπ¦ β β+ βπ§ β β ((absβ(π§ β π΄)) < π¦ β (absβ((π»βπ§) β (π»βπ΄))) < π₯)) | |
11 | 5, 10 | sylan 580 | . 2 β’ ((π β§ π₯ β β+) β βπ¦ β β+ βπ§ β β ((absβ(π§ β π΄)) < π¦ β (absβ((π»βπ§) β (π»βπ΄))) < π₯)) |
12 | climcn1lem.6 | . 2 β’ ((π β§ π β π) β (πΉβπ) β β) | |
13 | climcn1lem.9 | . 2 β’ ((π β§ π β π) β (πΊβπ) = (π»β(πΉβπ))) | |
14 | 1, 2, 5, 8, 3, 9, 11, 12, 13 | climcn1 15532 | 1 β’ (π β πΊ β (π»βπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 class class class wbr 5147 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcc 11104 < clt 11244 β cmin 11440 β€cz 12554 β€β₯cuz 12818 β+crp 12970 abscabs 15177 β cli 15424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-neg 11443 df-z 12555 df-uz 12819 df-clim 15428 |
This theorem is referenced by: climabs 15544 climcj 15545 climre 15546 climim 15547 sinccvglem 34645 |
Copyright terms: Public domain | W3C validator |