| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climcn1lem | Structured version Visualization version GIF version | ||
| Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| Ref | Expression |
|---|---|
| climcn1lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climcn1lem.2 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climcn1lem.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| climcn1lem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climcn1lem.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| climcn1lem.7 | ⊢ 𝐻:ℂ⟶ℂ |
| climcn1lem.8 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
| climcn1lem.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) |
| Ref | Expression |
|---|---|
| climcn1lem | ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn1lem.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climcn1lem.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climcn1lem.2 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 4 | climcl 15465 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 6 | climcn1lem.7 | . . . 4 ⊢ 𝐻:ℂ⟶ℂ | |
| 7 | 6 | ffvelcdmi 7055 | . . 3 ⊢ (𝑧 ∈ ℂ → (𝐻‘𝑧) ∈ ℂ) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐻‘𝑧) ∈ ℂ) |
| 9 | climcn1lem.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 10 | climcn1lem.8 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) | |
| 11 | 5, 10 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
| 12 | climcn1lem.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 13 | climcn1lem.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) | |
| 14 | 1, 2, 5, 8, 3, 9, 11, 12, 13 | climcn1 15558 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 < clt 11208 − cmin 11405 ℤcz 12529 ℤ≥cuz 12793 ℝ+crp 12951 abscabs 15200 ⇝ cli 15450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 df-clim 15454 |
| This theorem is referenced by: climabs 15570 climcj 15571 climre 15572 climim 15573 sinccvglem 35659 |
| Copyright terms: Public domain | W3C validator |