MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climabs Structured version   Visualization version   GIF version

Theorem climabs 15548
Description: Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climcn1lem.1 𝑍 = (β„€β‰₯β€˜π‘€)
climcn1lem.2 (πœ‘ β†’ 𝐹 ⇝ 𝐴)
climcn1lem.4 (πœ‘ β†’ 𝐺 ∈ π‘Š)
climcn1lem.5 (πœ‘ β†’ 𝑀 ∈ β„€)
climcn1lem.6 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
climabs.7 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (absβ€˜(πΉβ€˜π‘˜)))
Assertion
Ref Expression
climabs (πœ‘ β†’ 𝐺 ⇝ (absβ€˜π΄))
Distinct variable groups:   𝐴,π‘˜   π‘˜,𝐹   π‘˜,𝐺   πœ‘,π‘˜   π‘˜,𝑍   π‘˜,𝑀
Allowed substitution hint:   π‘Š(π‘˜)

Proof of Theorem climabs
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climcn1lem.1 . 2 𝑍 = (β„€β‰₯β€˜π‘€)
2 climcn1lem.2 . 2 (πœ‘ β†’ 𝐹 ⇝ 𝐴)
3 climcn1lem.4 . 2 (πœ‘ β†’ 𝐺 ∈ π‘Š)
4 climcn1lem.5 . 2 (πœ‘ β†’ 𝑀 ∈ β„€)
5 climcn1lem.6 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
6 absf 15284 . . 3 abs:β„‚βŸΆβ„
7 ax-resscn 11167 . . 3 ℝ βŠ† β„‚
8 fss 6735 . . 3 ((abs:β„‚βŸΆβ„ ∧ ℝ βŠ† β„‚) β†’ abs:β„‚βŸΆβ„‚)
96, 7, 8mp2an 691 . 2 abs:β„‚βŸΆβ„‚
10 abscn2 15543 . 2 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ β„‚ ((absβ€˜(𝑧 βˆ’ 𝐴)) < 𝑦 β†’ (absβ€˜((absβ€˜π‘§) βˆ’ (absβ€˜π΄))) < π‘₯))
11 climabs.7 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (absβ€˜(πΉβ€˜π‘˜)))
121, 2, 3, 4, 5, 9, 10, 11climcn1lem 15547 1 (πœ‘ β†’ 𝐺 ⇝ (absβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βŠ† wss 3949   class class class wbr 5149  βŸΆwf 6540  β€˜cfv 6544  β„‚cc 11108  β„cr 11109  β„€cz 12558  β„€β‰₯cuz 12822  abscabs 15181   ⇝ cli 15428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432
This theorem is referenced by:  iserabs  15761  ulmdvlem1  25912  dchrisumlem3  26994  dvgrat  43071  binomcxplemrat  43109
  Copyright terms: Public domain W3C validator