MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imcn2 Structured version   Visualization version   GIF version

Theorem imcn2 15544
Description: The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Assertion
Ref Expression
imcn2 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem imcn2
StepHypRef Expression
1 imf 15055 . . 3 ℑ:ℂ⟶ℝ
2 ax-resscn 11101 . . 3 ℝ ⊆ ℂ
3 fss 6686 . . 3 ((ℑ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℑ:ℂ⟶ℂ)
41, 2, 3mp2an 692 . 2 ℑ:ℂ⟶ℂ
5 imsub 15077 . . . 4 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℑ‘(𝑧𝐴)) = ((ℑ‘𝑧) − (ℑ‘𝐴)))
65fveq2d 6844 . . 3 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(ℑ‘(𝑧𝐴))) = (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))))
7 subcl 11396 . . . 4 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
8 absimle 15251 . . . 4 ((𝑧𝐴) ∈ ℂ → (abs‘(ℑ‘(𝑧𝐴))) ≤ (abs‘(𝑧𝐴)))
97, 8syl 17 . . 3 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(ℑ‘(𝑧𝐴))) ≤ (abs‘(𝑧𝐴)))
106, 9eqbrtrrd 5126 . 2 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) ≤ (abs‘(𝑧𝐴)))
114, 10cn1lem 15540 1 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043   < clt 11184  cle 11185  cmin 11381  +crp 12927  cim 15040  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  climim  15549  rlimim  15554  imcncf  24772
  Copyright terms: Public domain W3C validator