Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem1 Structured version   Visualization version   GIF version

Theorem bfplem1 35253
Description: Lemma for bfp 35255. The sequence 𝐺, which simply starts from any point in the space and iterates 𝐹, satisfies the property that the distance from 𝐺(𝑛) to 𝐺(𝑛 + 1) decreases by at least 𝐾 after each step. Thus, the total distance from any 𝐺(𝑖) to 𝐺(𝑗) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point ((⇝𝑡𝐽)‘𝐺) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
bfp.8 𝐽 = (MetOpen‘𝐷)
bfp.9 (𝜑𝐴𝑋)
bfp.10 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
Assertion
Ref Expression
bfplem1 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bfplem1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . 3 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 23893 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
4 nnuz 12273 . . . . 5 ℕ = (ℤ‘1)
5 bfp.10 . . . . 5 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
6 1zzd 12005 . . . . 5 (𝜑 → 1 ∈ ℤ)
7 bfp.9 . . . . 5 (𝜑𝐴𝑋)
8 bfp.6 . . . . 5 (𝜑𝐹:𝑋𝑋)
94, 5, 6, 7, 8algrf 15910 . . . 4 (𝜑𝐺:ℕ⟶𝑋)
108, 7ffvelrnd 6833 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ 𝑋)
11 metcl 22942 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑋) → (𝐴𝐷(𝐹𝐴)) ∈ ℝ)
123, 7, 10, 11syl3anc 1368 . . . . 5 (𝜑 → (𝐴𝐷(𝐹𝐴)) ∈ ℝ)
13 bfp.4 . . . . 5 (𝜑𝐾 ∈ ℝ+)
1412, 13rerpdivcld 12454 . . . 4 (𝜑 → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℝ)
15 bfp.5 . . . 4 (𝜑𝐾 < 1)
16 fveq2 6649 . . . . . . . . 9 (𝑗 = 1 → (𝐺𝑗) = (𝐺‘1))
17 fvoveq1 7162 . . . . . . . . 9 (𝑗 = 1 → (𝐺‘(𝑗 + 1)) = (𝐺‘(1 + 1)))
1816, 17oveq12d 7157 . . . . . . . 8 (𝑗 = 1 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘1)𝐷(𝐺‘(1 + 1))))
19 oveq2 7147 . . . . . . . . 9 (𝑗 = 1 → (𝐾𝑗) = (𝐾↑1))
2019oveq2d 7155 . . . . . . . 8 (𝑗 = 1 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))
2118, 20breq12d 5046 . . . . . . 7 (𝑗 = 1 → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1))))
2221imbi2d 344 . . . . . 6 (𝑗 = 1 → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))))
23 fveq2 6649 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐺𝑗) = (𝐺𝑘))
24 fvoveq1 7162 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐺‘(𝑗 + 1)) = (𝐺‘(𝑘 + 1)))
2523, 24oveq12d 7157 . . . . . . . 8 (𝑗 = 𝑘 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))
26 oveq2 7147 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
2726oveq2d 7155 . . . . . . . 8 (𝑗 = 𝑘 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))
2825, 27breq12d 5046 . . . . . . 7 (𝑗 = 𝑘 → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))))
2928imbi2d 344 . . . . . 6 (𝑗 = 𝑘 → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))))
30 fveq2 6649 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐺𝑗) = (𝐺‘(𝑘 + 1)))
31 fvoveq1 7162 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐺‘(𝑗 + 1)) = (𝐺‘((𝑘 + 1) + 1)))
3230, 31oveq12d 7157 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))))
33 oveq2 7147 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐾𝑗) = (𝐾↑(𝑘 + 1)))
3433oveq2d 7155 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))
3532, 34breq12d 5046 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
3635imbi2d 344 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
3712leidd 11199 . . . . . . 7 (𝜑 → (𝐴𝐷(𝐹𝐴)) ≤ (𝐴𝐷(𝐹𝐴)))
384, 5, 6, 7algr0 15909 . . . . . . . 8 (𝜑 → (𝐺‘1) = 𝐴)
39 1nn 11640 . . . . . . . . . 10 1 ∈ ℕ
404, 5, 6, 7, 8algrp1 15911 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ ℕ) → (𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1)))
4139, 40mpan2 690 . . . . . . . . 9 (𝜑 → (𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1)))
4238fveq2d 6653 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹𝐴))
4341, 42eqtrd 2836 . . . . . . . 8 (𝜑 → (𝐺‘(1 + 1)) = (𝐹𝐴))
4438, 43oveq12d 7157 . . . . . . 7 (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) = (𝐴𝐷(𝐹𝐴)))
4513rpred 12423 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ)
4645recnd 10662 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
4746exp1d 13505 . . . . . . . . 9 (𝜑 → (𝐾↑1) = 𝐾)
4847oveq2d 7155 . . . . . . . 8 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · 𝐾))
4912recnd 10662 . . . . . . . . 9 (𝜑 → (𝐴𝐷(𝐹𝐴)) ∈ ℂ)
5013rpne0d 12428 . . . . . . . . 9 (𝜑𝐾 ≠ 0)
5149, 46, 50divcan1d 11410 . . . . . . . 8 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · 𝐾) = (𝐴𝐷(𝐹𝐴)))
5248, 51eqtrd 2836 . . . . . . 7 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)) = (𝐴𝐷(𝐹𝐴)))
5337, 44, 523brtr4d 5065 . . . . . 6 (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))
549ffvelrnda 6832 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ 𝑋)
55 peano2nn 11641 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
56 ffvelrn 6830 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋)
579, 55, 56syl2an 598 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋)
5854, 57jca 515 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋))
59 bfp.7 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
6059ralrimivva 3159 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
6160adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
62 fveq2 6649 . . . . . . . . . . . . . 14 (𝑥 = (𝐺𝑘) → (𝐹𝑥) = (𝐹‘(𝐺𝑘)))
6362oveq1d 7154 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝑘) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)))
64 oveq1 7146 . . . . . . . . . . . . . 14 (𝑥 = (𝐺𝑘) → (𝑥𝐷𝑦) = ((𝐺𝑘)𝐷𝑦))
6564oveq2d 7155 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝑘) → (𝐾 · (𝑥𝐷𝑦)) = (𝐾 · ((𝐺𝑘)𝐷𝑦)))
6663, 65breq12d 5046 . . . . . . . . . . . 12 (𝑥 = (𝐺𝑘) → (((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑘)𝐷𝑦))))
67 fveq2 6649 . . . . . . . . . . . . . 14 (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐹𝑦) = (𝐹‘(𝐺‘(𝑘 + 1))))
6867oveq2d 7155 . . . . . . . . . . . . 13 (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))))
69 oveq2 7147 . . . . . . . . . . . . . 14 (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐺𝑘)𝐷𝑦) = ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))
7069oveq2d 7155 . . . . . . . . . . . . 13 (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐾 · ((𝐺𝑘)𝐷𝑦)) = (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
7168, 70breq12d 5046 . . . . . . . . . . . 12 (𝑦 = (𝐺‘(𝑘 + 1)) → (((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑘)𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))))
7266, 71rspc2v 3584 . . . . . . . . . . 11 (((𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))))
7358, 61, 72sylc 65 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
743adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
758adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐹:𝑋𝑋)
7675, 54ffvelrnd 6833 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝐺𝑘)) ∈ 𝑋)
7775, 57ffvelrnd 6833 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋)
78 metcl 22942 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑘)) ∈ 𝑋 ∧ (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ)
7974, 76, 77, 78syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8045adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐾 ∈ ℝ)
81 metcl 22942 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ)
8274, 54, 57, 81syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ)
8380, 82remulcld 10664 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8414adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℝ)
8555adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
8685nnnn0d 11947 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ0)
8780, 86reexpcld 13527 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) ∈ ℝ)
8884, 87remulcld 10664 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ)
89 letr 10727 . . . . . . . . . . 11 ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ) → ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
9079, 83, 88, 89syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
9173, 90mpand 694 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
92 nnnn0 11896 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
93 reexpcl 13446 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐾𝑘) ∈ ℝ)
9445, 92, 93syl2an 598 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℝ)
9584, 94remulcld 10664 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ∈ ℝ)
9613rpgt0d 12426 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐾)
9796adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐾)
98 lemul1 11485 . . . . . . . . . . 11 ((((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ ∧ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾)))
9982, 95, 80, 97, 98syl112anc 1371 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾)))
10082recnd 10662 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℂ)
10146adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐾 ∈ ℂ)
102100, 101mulcomd 10655 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) = (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
10384recnd 10662 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℂ)
10494recnd 10662 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℂ)
105103, 104, 101mulassd 10657 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · ((𝐾𝑘) · 𝐾)))
106 expp1 13436 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐾↑(𝑘 + 1)) = ((𝐾𝑘) · 𝐾))
10746, 92, 106syl2an 598 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) = ((𝐾𝑘) · 𝐾))
108107oveq2d 7155 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · ((𝐾𝑘) · 𝐾)))
109105, 108eqtr4d 2839 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))
110102, 109breq12d 5046 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) ↔ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
11199, 110bitrd 282 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
1124, 5, 6, 7, 8algrp1 15911 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) = (𝐹‘(𝐺𝑘)))
1134, 5, 6, 7, 8algrp1 15911 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1))))
11455, 113sylan2 595 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1))))
115112, 114oveq12d 7157 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) = ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))))
116115breq1d 5043 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
11791, 111, 1163imtr4d 297 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
118117expcom 417 . . . . . . 7 (𝑘 ∈ ℕ → (𝜑 → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
119118a2d 29 . . . . . 6 (𝑘 ∈ ℕ → ((𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))) → (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
12022, 29, 36, 29, 53, 119nnind 11647 . . . . 5 (𝑘 ∈ ℕ → (𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))))
121120impcom 411 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))
1223, 9, 14, 13, 15, 121geomcau 35190 . . 3 (𝜑𝐺 ∈ (Cau‘𝐷))
123 bfp.8 . . . 4 𝐽 = (MetOpen‘𝐷)
124123cmetcau 23896 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐺 ∈ (Cau‘𝐷)) → 𝐺 ∈ dom (⇝𝑡𝐽))
1251, 122, 124syl2anc 587 . 2 (𝜑𝐺 ∈ dom (⇝𝑡𝐽))
126 metxmet 22944 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
127123methaus 23130 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
1283, 126, 1273syl 18 . . 3 (𝜑𝐽 ∈ Haus)
129 lmfun 21989 . . 3 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
130 funfvbrb 6802 . . 3 (Fun (⇝𝑡𝐽) → (𝐺 ∈ dom (⇝𝑡𝐽) ↔ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)))
131128, 129, 1303syl 18 . 2 (𝜑 → (𝐺 ∈ dom (⇝𝑡𝐽) ↔ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)))
132125, 131mpbid 235 1 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  c0 4246  {csn 4528   class class class wbr 5033   × cxp 5521  dom cdm 5523  ccom 5527  Fun wfun 6322  wf 6324  cfv 6328  (class class class)co 7139  1st c1st 7673  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669   / cdiv 11290  cn 11629  0cn0 11889  +crp 12381  seqcseq 13368  cexp 13429  ∞Metcxmet 20079  Metcmet 20080  MetOpencmopn 20084  𝑡clm 21834  Hauscha 21916  Cauccau 23860  CMetccmet 23861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-rest 16691  df-topgen 16712  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-top 21502  df-topon 21519  df-bases 21554  df-ntr 21628  df-nei 21706  df-lm 21837  df-haus 21923  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-cfil 23862  df-cau 23863  df-cmet 23864
This theorem is referenced by:  bfplem2  35254
  Copyright terms: Public domain W3C validator