Step | Hyp | Ref
| Expression |
1 | | bfp.2 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
2 | | cmetmet 24355 |
. . . . 5
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
4 | | nnuz 12550 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
5 | | bfp.10 |
. . . . 5
⊢ 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ ×
{𝐴})) |
6 | | 1zzd 12281 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
7 | | bfp.9 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
8 | | bfp.6 |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶𝑋) |
9 | 4, 5, 6, 7, 8 | algrf 16206 |
. . . 4
⊢ (𝜑 → 𝐺:ℕ⟶𝑋) |
10 | 8, 7 | ffvelrnd 6944 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑋) |
11 | | metcl 23393 |
. . . . . 6
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ (𝐹‘𝐴) ∈ 𝑋) → (𝐴𝐷(𝐹‘𝐴)) ∈ ℝ) |
12 | 3, 7, 10, 11 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝐴𝐷(𝐹‘𝐴)) ∈ ℝ) |
13 | | bfp.4 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℝ+) |
14 | 12, 13 | rerpdivcld 12732 |
. . . 4
⊢ (𝜑 → ((𝐴𝐷(𝐹‘𝐴)) / 𝐾) ∈ ℝ) |
15 | | bfp.5 |
. . . 4
⊢ (𝜑 → 𝐾 < 1) |
16 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑗 = 1 → (𝐺‘𝑗) = (𝐺‘1)) |
17 | | fvoveq1 7278 |
. . . . . . . . 9
⊢ (𝑗 = 1 → (𝐺‘(𝑗 + 1)) = (𝐺‘(1 + 1))) |
18 | 16, 17 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑗 = 1 → ((𝐺‘𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘1)𝐷(𝐺‘(1 + 1)))) |
19 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑗 = 1 → (𝐾↑𝑗) = (𝐾↑1)) |
20 | 19 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑗 = 1 → (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑗)) = (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑1))) |
21 | 18, 20 | breq12d 5083 |
. . . . . . 7
⊢ (𝑗 = 1 → (((𝐺‘𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑗)) ↔ ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑1)))) |
22 | 21 | imbi2d 340 |
. . . . . 6
⊢ (𝑗 = 1 → ((𝜑 → ((𝐺‘𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑗))) ↔ (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑1))))) |
23 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝐺‘𝑗) = (𝐺‘𝑘)) |
24 | | fvoveq1 7278 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝐺‘(𝑗 + 1)) = (𝐺‘(𝑘 + 1))) |
25 | 23, 24 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → ((𝐺‘𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) |
26 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝐾↑𝑗) = (𝐾↑𝑘)) |
27 | 26 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑗)) = (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘))) |
28 | 25, 27 | breq12d 5083 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (((𝐺‘𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑗)) ↔ ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)))) |
29 | 28 | imbi2d 340 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝜑 → ((𝐺‘𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑗))) ↔ (𝜑 → ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘))))) |
30 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 + 1) → (𝐺‘𝑗) = (𝐺‘(𝑘 + 1))) |
31 | | fvoveq1 7278 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 + 1) → (𝐺‘(𝑗 + 1)) = (𝐺‘((𝑘 + 1) + 1))) |
32 | 30, 31 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑗 = (𝑘 + 1) → ((𝐺‘𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1)))) |
33 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 + 1) → (𝐾↑𝑗) = (𝐾↑(𝑘 + 1))) |
34 | 33 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑗 = (𝑘 + 1) → (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑗)) = (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) |
35 | 32, 34 | breq12d 5083 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (((𝐺‘𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑗)) ↔ ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))) |
36 | 35 | imbi2d 340 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((𝜑 → ((𝐺‘𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑗))) ↔ (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))) |
37 | 12 | leidd 11471 |
. . . . . . 7
⊢ (𝜑 → (𝐴𝐷(𝐹‘𝐴)) ≤ (𝐴𝐷(𝐹‘𝐴))) |
38 | 4, 5, 6, 7 | algr0 16205 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) = 𝐴) |
39 | | 1nn 11914 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
40 | 4, 5, 6, 7, 8 | algrp1 16207 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 ∈ ℕ) →
(𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1))) |
41 | 39, 40 | mpan2 687 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1))) |
42 | 38 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹‘𝐴)) |
43 | 41, 42 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘(1 + 1)) = (𝐹‘𝐴)) |
44 | 38, 43 | oveq12d 7273 |
. . . . . . 7
⊢ (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) = (𝐴𝐷(𝐹‘𝐴))) |
45 | 13 | rpred 12701 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ ℝ) |
46 | 45 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ℂ) |
47 | 46 | exp1d 13787 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾↑1) = 𝐾) |
48 | 47 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑1)) = (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · 𝐾)) |
49 | 12 | recnd 10934 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴𝐷(𝐹‘𝐴)) ∈ ℂ) |
50 | 13 | rpne0d 12706 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ≠ 0) |
51 | 49, 46, 50 | divcan1d 11682 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · 𝐾) = (𝐴𝐷(𝐹‘𝐴))) |
52 | 48, 51 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑1)) = (𝐴𝐷(𝐹‘𝐴))) |
53 | 37, 44, 52 | 3brtr4d 5102 |
. . . . . 6
⊢ (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑1))) |
54 | 9 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ 𝑋) |
55 | | peano2nn 11915 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
56 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋) |
57 | 9, 55, 56 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋) |
58 | 54, 57 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐺‘𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋)) |
59 | | bfp.7 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) |
60 | 59 | ralrimivva 3114 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) |
61 | 60 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) |
62 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐺‘𝑘) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑘))) |
63 | 62 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐺‘𝑘) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) = ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘𝑦))) |
64 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐺‘𝑘) → (𝑥𝐷𝑦) = ((𝐺‘𝑘)𝐷𝑦)) |
65 | 64 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐺‘𝑘) → (𝐾 · (𝑥𝐷𝑦)) = (𝐾 · ((𝐺‘𝑘)𝐷𝑦))) |
66 | 63, 65 | breq12d 5083 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐺‘𝑘) → (((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) ↔ ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘𝑦)) ≤ (𝐾 · ((𝐺‘𝑘)𝐷𝑦)))) |
67 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐹‘𝑦) = (𝐹‘(𝐺‘(𝑘 + 1)))) |
68 | 67 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘𝑦)) = ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1))))) |
69 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐺‘𝑘)𝐷𝑦) = ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) |
70 | 69 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐾 · ((𝐺‘𝑘)𝐷𝑦)) = (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))))) |
71 | 68, 70 | breq12d 5083 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐺‘(𝑘 + 1)) → (((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘𝑦)) ≤ (𝐾 · ((𝐺‘𝑘)𝐷𝑦)) ↔ ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))))) |
72 | 66, 71 | rspc2v 3562 |
. . . . . . . . . . 11
⊢ (((𝐺‘𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) → ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))))) |
73 | 58, 61, 72 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))))) |
74 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
75 | 8 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹:𝑋⟶𝑋) |
76 | 75, 54 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝐺‘𝑘)) ∈ 𝑋) |
77 | 75, 57 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋) |
78 | | metcl 23393 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺‘𝑘)) ∈ 𝑋 ∧ (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋) → ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ) |
79 | 74, 76, 77, 78 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ) |
80 | 45 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐾 ∈ ℝ) |
81 | | metcl 23393 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ) |
82 | 74, 54, 57, 81 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ) |
83 | 80, 82 | remulcld 10936 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ) |
84 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝐴)) / 𝐾) ∈ ℝ) |
85 | 55 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ) |
86 | 85 | nnnn0d 12223 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈
ℕ0) |
87 | 80, 86 | reexpcld 13809 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) ∈ ℝ) |
88 | 84, 87 | remulcld 10936 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ) |
89 | | letr 10999 |
. . . . . . . . . . 11
⊢ ((((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ) → ((((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))) |
90 | 79, 83, 88, 89 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))) |
91 | 73, 90 | mpand 691 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) → ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))) |
92 | | nnnn0 12170 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
93 | | reexpcl 13727 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ (𝐾↑𝑘) ∈
ℝ) |
94 | 45, 92, 93 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐾↑𝑘) ∈ ℝ) |
95 | 84, 94 | remulcld 10936 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) ∈ ℝ) |
96 | 13 | rpgt0d 12704 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝐾) |
97 | 96 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 < 𝐾) |
98 | | lemul1 11757 |
. . . . . . . . . . 11
⊢ ((((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ ∧ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) ↔ (((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) · 𝐾))) |
99 | 82, 95, 80, 97, 98 | syl112anc 1372 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) ↔ (((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) · 𝐾))) |
100 | 82 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℂ) |
101 | 46 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐾 ∈ ℂ) |
102 | 100, 101 | mulcomd 10927 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) = (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))))) |
103 | 84 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝐴)) / 𝐾) ∈ ℂ) |
104 | 94 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐾↑𝑘) ∈ ℂ) |
105 | 103, 104,
101 | mulassd 10929 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) · 𝐾) = (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · ((𝐾↑𝑘) · 𝐾))) |
106 | | expp1 13717 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐾↑(𝑘 + 1)) = ((𝐾↑𝑘) · 𝐾)) |
107 | 46, 92, 106 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) = ((𝐾↑𝑘) · 𝐾)) |
108 | 107 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) = (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · ((𝐾↑𝑘) · 𝐾))) |
109 | 105, 108 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) · 𝐾) = (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) |
110 | 102, 109 | breq12d 5083 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) · 𝐾) ↔ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))) |
111 | 99, 110 | bitrd 278 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) ↔ (𝐾 · ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))) |
112 | 4, 5, 6, 7, 8 | algrp1 16207 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) = (𝐹‘(𝐺‘𝑘))) |
113 | 4, 5, 6, 7, 8 | algrp1 16207 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1)))) |
114 | 55, 113 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1)))) |
115 | 112, 114 | oveq12d 7273 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) = ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1))))) |
116 | 115 | breq1d 5080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ↔ ((𝐹‘(𝐺‘𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))) |
117 | 91, 111, 116 | 3imtr4d 293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))) |
118 | 117 | expcom 413 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝜑 → (((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))) |
119 | 118 | a2d 29 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝜑 → ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘))) → (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))) |
120 | 22, 29, 36, 29, 53, 119 | nnind 11921 |
. . . . 5
⊢ (𝑘 ∈ ℕ → (𝜑 → ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘)))) |
121 | 120 | impcom 407 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐺‘𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹‘𝐴)) / 𝐾) · (𝐾↑𝑘))) |
122 | 3, 9, 14, 13, 15, 121 | geomcau 35844 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (Cau‘𝐷)) |
123 | | bfp.8 |
. . . 4
⊢ 𝐽 = (MetOpen‘𝐷) |
124 | 123 | cmetcau 24358 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐺 ∈ (Cau‘𝐷)) → 𝐺 ∈ dom
(⇝𝑡‘𝐽)) |
125 | 1, 122, 124 | syl2anc 583 |
. 2
⊢ (𝜑 → 𝐺 ∈ dom
(⇝𝑡‘𝐽)) |
126 | | metxmet 23395 |
. . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
127 | 123 | methaus 23582 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
128 | 3, 126, 127 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐽 ∈ Haus) |
129 | | lmfun 22440 |
. . 3
⊢ (𝐽 ∈ Haus → Fun
(⇝𝑡‘𝐽)) |
130 | | funfvbrb 6910 |
. . 3
⊢ (Fun
(⇝𝑡‘𝐽) → (𝐺 ∈ dom
(⇝𝑡‘𝐽) ↔ 𝐺(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝐺))) |
131 | 128, 129,
130 | 3syl 18 |
. 2
⊢ (𝜑 → (𝐺 ∈ dom
(⇝𝑡‘𝐽) ↔ 𝐺(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝐺))) |
132 | 125, 131 | mpbid 231 |
1
⊢ (𝜑 → 𝐺(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝐺)) |