Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem1 Structured version   Visualization version   GIF version

Theorem bfplem1 34542
Description: Lemma for bfp 34544. The sequence 𝐺, which simply starts from any point in the space and iterates 𝐹, satisfies the property that the distance from 𝐺(𝑛) to 𝐺(𝑛 + 1) decreases by at least 𝐾 after each step. Thus, the total distance from any 𝐺(𝑖) to 𝐺(𝑗) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point ((⇝𝑡𝐽)‘𝐺) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
bfp.8 𝐽 = (MetOpen‘𝐷)
bfp.9 (𝜑𝐴𝑋)
bfp.10 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
Assertion
Ref Expression
bfplem1 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bfplem1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . 3 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 23586 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
4 nnuz 12089 . . . . 5 ℕ = (ℤ‘1)
5 bfp.10 . . . . 5 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
6 1zzd 11820 . . . . 5 (𝜑 → 1 ∈ ℤ)
7 bfp.9 . . . . 5 (𝜑𝐴𝑋)
8 bfp.6 . . . . 5 (𝜑𝐹:𝑋𝑋)
94, 5, 6, 7, 8algrf 15767 . . . 4 (𝜑𝐺:ℕ⟶𝑋)
108, 7ffvelrnd 6671 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ 𝑋)
11 metcl 22639 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑋) → (𝐴𝐷(𝐹𝐴)) ∈ ℝ)
123, 7, 10, 11syl3anc 1351 . . . . 5 (𝜑 → (𝐴𝐷(𝐹𝐴)) ∈ ℝ)
13 bfp.4 . . . . 5 (𝜑𝐾 ∈ ℝ+)
1412, 13rerpdivcld 12273 . . . 4 (𝜑 → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℝ)
15 bfp.5 . . . 4 (𝜑𝐾 < 1)
16 fveq2 6493 . . . . . . . . 9 (𝑗 = 1 → (𝐺𝑗) = (𝐺‘1))
17 fvoveq1 6993 . . . . . . . . 9 (𝑗 = 1 → (𝐺‘(𝑗 + 1)) = (𝐺‘(1 + 1)))
1816, 17oveq12d 6988 . . . . . . . 8 (𝑗 = 1 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘1)𝐷(𝐺‘(1 + 1))))
19 oveq2 6978 . . . . . . . . 9 (𝑗 = 1 → (𝐾𝑗) = (𝐾↑1))
2019oveq2d 6986 . . . . . . . 8 (𝑗 = 1 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))
2118, 20breq12d 4936 . . . . . . 7 (𝑗 = 1 → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1))))
2221imbi2d 333 . . . . . 6 (𝑗 = 1 → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))))
23 fveq2 6493 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐺𝑗) = (𝐺𝑘))
24 fvoveq1 6993 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐺‘(𝑗 + 1)) = (𝐺‘(𝑘 + 1)))
2523, 24oveq12d 6988 . . . . . . . 8 (𝑗 = 𝑘 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))
26 oveq2 6978 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
2726oveq2d 6986 . . . . . . . 8 (𝑗 = 𝑘 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))
2825, 27breq12d 4936 . . . . . . 7 (𝑗 = 𝑘 → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))))
2928imbi2d 333 . . . . . 6 (𝑗 = 𝑘 → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))))
30 fveq2 6493 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐺𝑗) = (𝐺‘(𝑘 + 1)))
31 fvoveq1 6993 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐺‘(𝑗 + 1)) = (𝐺‘((𝑘 + 1) + 1)))
3230, 31oveq12d 6988 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))))
33 oveq2 6978 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐾𝑗) = (𝐾↑(𝑘 + 1)))
3433oveq2d 6986 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))
3532, 34breq12d 4936 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
3635imbi2d 333 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
3712leidd 11001 . . . . . . 7 (𝜑 → (𝐴𝐷(𝐹𝐴)) ≤ (𝐴𝐷(𝐹𝐴)))
384, 5, 6, 7algr0 15766 . . . . . . . 8 (𝜑 → (𝐺‘1) = 𝐴)
39 1nn 11446 . . . . . . . . . 10 1 ∈ ℕ
404, 5, 6, 7, 8algrp1 15768 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ ℕ) → (𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1)))
4139, 40mpan2 678 . . . . . . . . 9 (𝜑 → (𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1)))
4238fveq2d 6497 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹𝐴))
4341, 42eqtrd 2808 . . . . . . . 8 (𝜑 → (𝐺‘(1 + 1)) = (𝐹𝐴))
4438, 43oveq12d 6988 . . . . . . 7 (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) = (𝐴𝐷(𝐹𝐴)))
4513rpred 12242 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ)
4645recnd 10462 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
4746exp1d 13314 . . . . . . . . 9 (𝜑 → (𝐾↑1) = 𝐾)
4847oveq2d 6986 . . . . . . . 8 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · 𝐾))
4912recnd 10462 . . . . . . . . 9 (𝜑 → (𝐴𝐷(𝐹𝐴)) ∈ ℂ)
5013rpne0d 12247 . . . . . . . . 9 (𝜑𝐾 ≠ 0)
5149, 46, 50divcan1d 11212 . . . . . . . 8 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · 𝐾) = (𝐴𝐷(𝐹𝐴)))
5248, 51eqtrd 2808 . . . . . . 7 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)) = (𝐴𝐷(𝐹𝐴)))
5337, 44, 523brtr4d 4955 . . . . . 6 (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))
549ffvelrnda 6670 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ 𝑋)
55 peano2nn 11447 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
56 ffvelrn 6668 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋)
579, 55, 56syl2an 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋)
5854, 57jca 504 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋))
59 bfp.7 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
6059ralrimivva 3135 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
6160adantr 473 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
62 fveq2 6493 . . . . . . . . . . . . . 14 (𝑥 = (𝐺𝑘) → (𝐹𝑥) = (𝐹‘(𝐺𝑘)))
6362oveq1d 6985 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝑘) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)))
64 oveq1 6977 . . . . . . . . . . . . . 14 (𝑥 = (𝐺𝑘) → (𝑥𝐷𝑦) = ((𝐺𝑘)𝐷𝑦))
6564oveq2d 6986 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝑘) → (𝐾 · (𝑥𝐷𝑦)) = (𝐾 · ((𝐺𝑘)𝐷𝑦)))
6663, 65breq12d 4936 . . . . . . . . . . . 12 (𝑥 = (𝐺𝑘) → (((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑘)𝐷𝑦))))
67 fveq2 6493 . . . . . . . . . . . . . 14 (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐹𝑦) = (𝐹‘(𝐺‘(𝑘 + 1))))
6867oveq2d 6986 . . . . . . . . . . . . 13 (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))))
69 oveq2 6978 . . . . . . . . . . . . . 14 (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐺𝑘)𝐷𝑦) = ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))
7069oveq2d 6986 . . . . . . . . . . . . 13 (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐾 · ((𝐺𝑘)𝐷𝑦)) = (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
7168, 70breq12d 4936 . . . . . . . . . . . 12 (𝑦 = (𝐺‘(𝑘 + 1)) → (((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑘)𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))))
7266, 71rspc2v 3542 . . . . . . . . . . 11 (((𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))))
7358, 61, 72sylc 65 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
743adantr 473 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
758adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐹:𝑋𝑋)
7675, 54ffvelrnd 6671 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝐺𝑘)) ∈ 𝑋)
7775, 57ffvelrnd 6671 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋)
78 metcl 22639 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑘)) ∈ 𝑋 ∧ (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ)
7974, 76, 77, 78syl3anc 1351 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8045adantr 473 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐾 ∈ ℝ)
81 metcl 22639 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ)
8274, 54, 57, 81syl3anc 1351 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ)
8380, 82remulcld 10464 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8414adantr 473 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℝ)
8555adantl 474 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
8685nnnn0d 11761 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ0)
8780, 86reexpcld 13336 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) ∈ ℝ)
8884, 87remulcld 10464 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ)
89 letr 10528 . . . . . . . . . . 11 ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ) → ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
9079, 83, 88, 89syl3anc 1351 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
9173, 90mpand 682 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
92 nnnn0 11709 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
93 reexpcl 13255 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐾𝑘) ∈ ℝ)
9445, 92, 93syl2an 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℝ)
9584, 94remulcld 10464 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ∈ ℝ)
9613rpgt0d 12245 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐾)
9796adantr 473 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐾)
98 lemul1 11287 . . . . . . . . . . 11 ((((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ ∧ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾)))
9982, 95, 80, 97, 98syl112anc 1354 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾)))
10082recnd 10462 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℂ)
10146adantr 473 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐾 ∈ ℂ)
102100, 101mulcomd 10455 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) = (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
10384recnd 10462 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℂ)
10494recnd 10462 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℂ)
105103, 104, 101mulassd 10457 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · ((𝐾𝑘) · 𝐾)))
106 expp1 13245 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐾↑(𝑘 + 1)) = ((𝐾𝑘) · 𝐾))
10746, 92, 106syl2an 586 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) = ((𝐾𝑘) · 𝐾))
108107oveq2d 6986 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · ((𝐾𝑘) · 𝐾)))
109105, 108eqtr4d 2811 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))
110102, 109breq12d 4936 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) ↔ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
11199, 110bitrd 271 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
1124, 5, 6, 7, 8algrp1 15768 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) = (𝐹‘(𝐺𝑘)))
1134, 5, 6, 7, 8algrp1 15768 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1))))
11455, 113sylan2 583 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1))))
115112, 114oveq12d 6988 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) = ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))))
116115breq1d 4933 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
11791, 111, 1163imtr4d 286 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
118117expcom 406 . . . . . . 7 (𝑘 ∈ ℕ → (𝜑 → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
119118a2d 29 . . . . . 6 (𝑘 ∈ ℕ → ((𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))) → (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
12022, 29, 36, 29, 53, 119nnind 11453 . . . . 5 (𝑘 ∈ ℕ → (𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))))
121120impcom 399 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))
1223, 9, 14, 13, 15, 121geomcau 34476 . . 3 (𝜑𝐺 ∈ (Cau‘𝐷))
123 bfp.8 . . . 4 𝐽 = (MetOpen‘𝐷)
124123cmetcau 23589 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐺 ∈ (Cau‘𝐷)) → 𝐺 ∈ dom (⇝𝑡𝐽))
1251, 122, 124syl2anc 576 . 2 (𝜑𝐺 ∈ dom (⇝𝑡𝐽))
126 metxmet 22641 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
127123methaus 22827 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
1283, 126, 1273syl 18 . . 3 (𝜑𝐽 ∈ Haus)
129 lmfun 21687 . . 3 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
130 funfvbrb 6640 . . 3 (Fun (⇝𝑡𝐽) → (𝐺 ∈ dom (⇝𝑡𝐽) ↔ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)))
131128, 129, 1303syl 18 . 2 (𝜑 → (𝐺 ∈ dom (⇝𝑡𝐽) ↔ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)))
132125, 131mpbid 224 1 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2961  wral 3082  c0 4172  {csn 4435   class class class wbr 4923   × cxp 5399  dom cdm 5401  ccom 5405  Fun wfun 6176  wf 6178  cfv 6182  (class class class)co 6970  1st c1st 7493  cc 10327  cr 10328  0cc0 10329  1c1 10330   + caddc 10332   · cmul 10334   < clt 10468  cle 10469   / cdiv 11092  cn 11433  0cn0 11701  +crp 12198  seqcseq 13178  cexp 13238  ∞Metcxmet 20226  Metcmet 20227  MetOpencmopn 20231  𝑡clm 21532  Hauscha 21614  Cauccau 23553  CMetccmet 23554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8892  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-se 5361  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-map 8202  df-pm 8203  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-sup 8695  df-inf 8696  df-oi 8763  df-card 9156  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-n0 11702  df-z 11788  df-uz 12053  df-q 12157  df-rp 12199  df-xneg 12318  df-xadd 12319  df-xmul 12320  df-ico 12554  df-icc 12555  df-fz 12703  df-fzo 12844  df-fl 12971  df-seq 13179  df-exp 13239  df-hash 13500  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-clim 14700  df-rlim 14701  df-sum 14898  df-rest 16546  df-topgen 16567  df-psmet 20233  df-xmet 20234  df-met 20235  df-bl 20236  df-mopn 20237  df-fbas 20238  df-fg 20239  df-top 21200  df-topon 21217  df-bases 21252  df-ntr 21326  df-nei 21404  df-lm 21535  df-haus 21621  df-fil 22152  df-fm 22244  df-flim 22245  df-flf 22246  df-cfil 23555  df-cau 23556  df-cmet 23557
This theorem is referenced by:  bfplem2  34543
  Copyright terms: Public domain W3C validator