Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcau Structured version   Visualization version   GIF version

Theorem cmetcau 23495
 Description: The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Oct-2015.)
Hypothesis
Ref Expression
cmetcau.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
cmetcau ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡𝐽))

Proof of Theorem cmetcau
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 23492 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 22547 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
4 caun0 23487 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅)
53, 4sylan 575 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅)
6 n0 4158 . . 3 (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥𝑋)
75, 6sylib 210 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∃𝑥 𝑥𝑋)
8 cmetcau.1 . . 3 𝐽 = (MetOpen‘𝐷)
9 simpll 757 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥𝑋) → 𝐷 ∈ (CMet‘𝑋))
10 simpr 479 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥𝑋) → 𝑥𝑋)
11 simplr 759 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥𝑋) → 𝐹 ∈ (Cau‘𝐷))
12 eqid 2777 . . 3 (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹𝑦), 𝑥)) = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹𝑦), 𝑥))
138, 9, 10, 11, 12cmetcaulem 23494 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥𝑋) → 𝐹 ∈ dom (⇝𝑡𝐽))
147, 13exlimddv 1978 1 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601  ∃wex 1823   ∈ wcel 2106   ≠ wne 2968  ∅c0 4140  ifcif 4306   ↦ cmpt 4965  dom cdm 5355  ‘cfv 6135  ℕcn 11374  ∞Metcxmet 20127  Metcmet 20128  MetOpencmopn 20132  ⇝𝑡clm 21438  Cauccau 23459  CMetccmet 23460 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ico 12493  df-rest 16469  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-top 21106  df-topon 21123  df-bases 21158  df-ntr 21232  df-nei 21310  df-lm 21441  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-cfil 23461  df-cau 23462  df-cmet 23463 This theorem is referenced by:  iscmet3  23499  iscmet2  23500  bcthlem4  23533  minvecolem4a  28305  hlcompl  28343  heiborlem9  34237  bfplem1  34240
 Copyright terms: Public domain W3C validator