Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmetcau | Structured version Visualization version GIF version |
Description: The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Oct-2015.) |
Ref | Expression |
---|---|
cmetcau.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
cmetcau | ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmetmet 24450 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
2 | metxmet 23487 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
4 | caun0 24445 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅) | |
5 | 3, 4 | sylan 580 | . . 3 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅) |
6 | n0 4280 | . . 3 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑋) | |
7 | 5, 6 | sylib 217 | . 2 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∃𝑥 𝑥 ∈ 𝑋) |
8 | cmetcau.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
9 | simpll 764 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (CMet‘𝑋)) | |
10 | simpr 485 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
11 | simplr 766 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝐹 ∈ (Cau‘𝐷)) | |
12 | eqid 2738 | . . 3 ⊢ (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹‘𝑦), 𝑥)) = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹‘𝑦), 𝑥)) | |
13 | 8, 9, 10, 11, 12 | cmetcaulem 24452 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
14 | 7, 13 | exlimddv 1938 | 1 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ifcif 4459 ↦ cmpt 5157 dom cdm 5589 ‘cfv 6433 ℕcn 11973 ∞Metcxmet 20582 Metcmet 20583 MetOpencmopn 20587 ⇝𝑡clm 22377 Cauccau 24417 CMetccmet 24418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ico 13085 df-rest 17133 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-top 22043 df-topon 22060 df-bases 22096 df-ntr 22171 df-nei 22249 df-lm 22380 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-cfil 24419 df-cau 24420 df-cmet 24421 |
This theorem is referenced by: iscmet3 24457 iscmet2 24458 bcthlem4 24491 minvecolem4a 29239 hlcompl 29277 heiborlem9 35977 bfplem1 35980 |
Copyright terms: Public domain | W3C validator |