| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmetcau | Structured version Visualization version GIF version | ||
| Description: The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Oct-2015.) |
| Ref | Expression |
|---|---|
| cmetcau.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| cmetcau | ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmetmet 25202 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 2 | metxmet 24238 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 4 | caun0 25197 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅) | |
| 5 | 3, 4 | sylan 580 | . . 3 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅) |
| 6 | n0 4306 | . . 3 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑋) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∃𝑥 𝑥 ∈ 𝑋) |
| 8 | cmetcau.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 9 | simpll 766 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (CMet‘𝑋)) | |
| 10 | simpr 484 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 11 | simplr 768 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝐹 ∈ (Cau‘𝐷)) | |
| 12 | eqid 2729 | . . 3 ⊢ (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹‘𝑦), 𝑥)) = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹‘𝑦), 𝑥)) | |
| 13 | 8, 9, 10, 11, 12 | cmetcaulem 25204 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
| 14 | 7, 13 | exlimddv 1935 | 1 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 ifcif 4478 ↦ cmpt 5176 dom cdm 5623 ‘cfv 6486 ℕcn 12146 ∞Metcxmet 21264 Metcmet 21265 MetOpencmopn 21269 ⇝𝑡clm 23129 Cauccau 25169 CMetccmet 25170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ico 13272 df-rest 17344 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-top 22797 df-topon 22814 df-bases 22849 df-ntr 22923 df-nei 23001 df-lm 23132 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-cfil 25171 df-cau 25172 df-cmet 25173 |
| This theorem is referenced by: iscmet3 25209 iscmet2 25210 bcthlem4 25243 minvecolem4a 30839 hlcompl 30877 heiborlem9 37798 bfplem1 37801 |
| Copyright terms: Public domain | W3C validator |