| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmetcau | Structured version Visualization version GIF version | ||
| Description: The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Oct-2015.) |
| Ref | Expression |
|---|---|
| cmetcau.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| cmetcau | ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmetmet 25211 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 2 | metxmet 24247 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 4 | caun0 25206 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅) | |
| 5 | 3, 4 | sylan 580 | . . 3 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅) |
| 6 | n0 4303 | . . 3 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑋) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∃𝑥 𝑥 ∈ 𝑋) |
| 8 | cmetcau.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 9 | simpll 766 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (CMet‘𝑋)) | |
| 10 | simpr 484 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 11 | simplr 768 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝐹 ∈ (Cau‘𝐷)) | |
| 12 | eqid 2731 | . . 3 ⊢ (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹‘𝑦), 𝑥)) = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ dom 𝐹, (𝐹‘𝑦), 𝑥)) | |
| 13 | 8, 9, 10, 11, 12 | cmetcaulem 25213 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) ∧ 𝑥 ∈ 𝑋) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
| 14 | 7, 13 | exlimddv 1936 | 1 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 ifcif 4475 ↦ cmpt 5172 dom cdm 5616 ‘cfv 6481 ℕcn 12122 ∞Metcxmet 21274 Metcmet 21275 MetOpencmopn 21279 ⇝𝑡clm 23139 Cauccau 25178 CMetccmet 25179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ico 13248 df-rest 17323 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-top 22807 df-topon 22824 df-bases 22859 df-ntr 22933 df-nei 23011 df-lm 23142 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-cfil 25180 df-cau 25181 df-cmet 25182 |
| This theorem is referenced by: iscmet3 25218 iscmet2 25219 bcthlem4 25252 minvecolem4a 30852 hlcompl 30890 heiborlem9 37858 bfplem1 37861 |
| Copyright terms: Public domain | W3C validator |