![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscmet2 | Structured version Visualization version GIF version |
Description: A metric 𝐷 is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of [Kreyszig] p. 28. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscmet2.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
iscmet2 | ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmetmet 23461 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
2 | iscmet2.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
3 | 2 | cmetcau 23464 | . . . . 5 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡‘𝐽)) |
4 | 3 | ex 403 | . . . 4 ⊢ (𝐷 ∈ (CMet‘𝑋) → (𝑓 ∈ (Cau‘𝐷) → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
5 | 4 | ssrdv 3833 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) |
6 | 1, 5 | jca 507 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
7 | ssel2 3822 | . . . . . 6 ⊢ (((Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡‘𝐽)) | |
8 | 7 | a1d 25 | . . . . 5 ⊢ (((Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽) ∧ 𝑓 ∈ (Cau‘𝐷)) → (𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
9 | 8 | ralrimiva 3175 | . . . 4 ⊢ ((Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
10 | 9 | adantl 475 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
11 | nnuz 12012 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
12 | 1zzd 11743 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → 1 ∈ ℤ) | |
13 | simpl 476 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → 𝐷 ∈ (Met‘𝑋)) | |
14 | 11, 2, 12, 13 | iscmet3 23468 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽)))) |
15 | 10, 14 | mpbird 249 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → 𝐷 ∈ (CMet‘𝑋)) |
16 | 6, 15 | impbii 201 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 dom cdm 5346 ⟶wf 6123 ‘cfv 6127 1c1 10260 ℕcn 11357 Metcmet 20099 MetOpencmopn 20103 ⇝𝑡clm 21408 Cauccau 23428 CMetccmet 23429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cc 9579 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-omul 7836 df-er 8014 df-map 8129 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fi 8592 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-acn 9088 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-n0 11626 df-z 11712 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ico 12476 df-fz 12627 df-fl 12895 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-clim 14603 df-rlim 14604 df-rest 16443 df-topgen 16464 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-fbas 20110 df-fg 20111 df-top 21076 df-topon 21093 df-bases 21128 df-ntr 21202 df-nei 21280 df-lm 21411 df-fil 22027 df-fm 22119 df-flim 22120 df-flf 22121 df-cfil 23430 df-cau 23431 df-cmet 23432 |
This theorem is referenced by: cssbn 23550 |
Copyright terms: Public domain | W3C validator |