![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscmet2 | Structured version Visualization version GIF version |
Description: A metric 𝐷 is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of [Kreyszig] p. 28. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscmet2.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
iscmet2 | ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmetmet 25333 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
2 | iscmet2.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
3 | 2 | cmetcau 25336 | . . . . 5 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡‘𝐽)) |
4 | 3 | ex 412 | . . . 4 ⊢ (𝐷 ∈ (CMet‘𝑋) → (𝑓 ∈ (Cau‘𝐷) → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
5 | 4 | ssrdv 4000 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) |
6 | 1, 5 | jca 511 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
7 | ssel2 3989 | . . . . . 6 ⊢ (((Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡‘𝐽)) | |
8 | 7 | a1d 25 | . . . . 5 ⊢ (((Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽) ∧ 𝑓 ∈ (Cau‘𝐷)) → (𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
9 | 8 | ralrimiva 3143 | . . . 4 ⊢ ((Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
11 | nnuz 12918 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
12 | 1zzd 12645 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → 1 ∈ ℤ) | |
13 | simpl 482 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → 𝐷 ∈ (Met‘𝑋)) | |
14 | 11, 2, 12, 13 | iscmet3 25340 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽)))) |
15 | 10, 14 | mpbird 257 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → 𝐷 ∈ (CMet‘𝑋)) |
16 | 6, 15 | impbii 209 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 dom cdm 5688 ⟶wf 6558 ‘cfv 6562 1c1 11153 ℕcn 12263 Metcmet 21367 MetOpencmopn 21371 ⇝𝑡clm 23249 Cauccau 25300 CMetccmet 25301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cc 10472 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-omul 8509 df-er 8743 df-map 8866 df-pm 8867 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-acn 9979 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ico 13389 df-fz 13544 df-fl 13828 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-rlim 15521 df-rest 17468 df-topgen 17489 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-top 22915 df-topon 22932 df-bases 22968 df-ntr 23043 df-nei 23121 df-lm 23252 df-fil 23869 df-fm 23961 df-flim 23962 df-flf 23963 df-cfil 25302 df-cau 25303 df-cmet 25304 |
This theorem is referenced by: cssbn 25422 |
Copyright terms: Public domain | W3C validator |