Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscmet2 | Structured version Visualization version GIF version |
Description: A metric 𝐷 is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of [Kreyszig] p. 28. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscmet2.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
iscmet2 | ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmetmet 24555 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
2 | iscmet2.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
3 | 2 | cmetcau 24558 | . . . . 5 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡‘𝐽)) |
4 | 3 | ex 414 | . . . 4 ⊢ (𝐷 ∈ (CMet‘𝑋) → (𝑓 ∈ (Cau‘𝐷) → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
5 | 4 | ssrdv 3941 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) |
6 | 1, 5 | jca 513 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
7 | ssel2 3930 | . . . . . 6 ⊢ (((Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡‘𝐽)) | |
8 | 7 | a1d 25 | . . . . 5 ⊢ (((Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽) ∧ 𝑓 ∈ (Cau‘𝐷)) → (𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
9 | 8 | ralrimiva 3140 | . . . 4 ⊢ ((Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
10 | 9 | adantl 483 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽))) |
11 | nnuz 12726 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
12 | 1zzd 12456 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → 1 ∈ ℤ) | |
13 | simpl 484 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → 𝐷 ∈ (Met‘𝑋)) | |
14 | 11, 2, 12, 13 | iscmet3 24562 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽)))) |
15 | 10, 14 | mpbird 257 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽)) → 𝐷 ∈ (CMet‘𝑋)) |
16 | 6, 15 | impbii 208 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ⊆ wss 3901 dom cdm 5624 ⟶wf 6479 ‘cfv 6483 1c1 10977 ℕcn 12078 Metcmet 20688 MetOpencmopn 20692 ⇝𝑡clm 22482 Cauccau 24522 CMetccmet 24523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cc 10296 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-oadd 8375 df-omul 8376 df-er 8573 df-map 8692 df-pm 8693 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fi 9272 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-acn 9803 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-z 12425 df-uz 12688 df-q 12794 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-ico 13190 df-fz 13345 df-fl 13617 df-seq 13827 df-exp 13888 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-rlim 15297 df-rest 17230 df-topgen 17251 df-psmet 20694 df-xmet 20695 df-met 20696 df-bl 20697 df-mopn 20698 df-fbas 20699 df-fg 20700 df-top 22148 df-topon 22165 df-bases 22201 df-ntr 22276 df-nei 22354 df-lm 22485 df-fil 23102 df-fm 23194 df-flim 23195 df-flf 23196 df-cfil 24524 df-cau 24525 df-cmet 24526 |
This theorem is referenced by: cssbn 24644 |
Copyright terms: Public domain | W3C validator |