| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for heibor 37812. Discharge the hypotheses of heiborlem8 37809 by applying caubl 25215 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.) |
| Ref | Expression |
|---|---|
| heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
| heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
| heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
| heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
| heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
| heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
| heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
| heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
| heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
| heibor.13 | ⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
| heiborlem9.14 | ⊢ (𝜑 → ∪ 𝑈 = 𝑋) |
| Ref | Expression |
|---|---|
| heiborlem9 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.6 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
| 2 | cmetmet 25193 | . . . . . . 7 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 3 | metxmet 24228 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | heibor.1 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 6 | 5 | mopntopon 24333 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | heibor.3 | . . . . . . . . 9 ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | |
| 9 | heibor.4 | . . . . . . . . 9 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
| 10 | heibor.5 | . . . . . . . . 9 ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | |
| 11 | heibor.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | |
| 12 | heibor.8 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | |
| 13 | heibor.9 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | |
| 14 | heibor.10 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶𝐺0) | |
| 15 | heibor.11 | . . . . . . . . 9 ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | |
| 16 | heibor.12 | . . . . . . . . 9 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
| 17 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem5 37806 | . . . . . . . 8 ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
| 18 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem6 37807 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |
| 19 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem7 37808 | . . . . . . . . 9 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
| 20 | 19 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟) |
| 21 | 4, 17, 18, 20 | caubl 25215 | . . . . . . 7 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ (Cau‘𝐷)) |
| 22 | 5 | cmetcau 25196 | . . . . . . 7 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (1st ∘ 𝑀) ∈ (Cau‘𝐷)) → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
| 23 | 1, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
| 24 | 5 | methaus 24414 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
| 25 | 4, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Haus) |
| 26 | lmfun 23274 | . . . . . . 7 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
| 27 | funfvbrb 7030 | . . . . . . 7 ⊢ (Fun (⇝𝑡‘𝐽) → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) | |
| 28 | 25, 26, 27 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) |
| 29 | 23, 28 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
| 30 | lmcl 23190 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) | |
| 31 | 7, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) |
| 32 | heiborlem9.14 | . . . 4 ⊢ (𝜑 → ∪ 𝑈 = 𝑋) | |
| 33 | 31, 32 | eleqtrrd 2832 | . . 3 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈) |
| 34 | eluni2 4883 | . . 3 ⊢ (((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈 ↔ ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
| 35 | 33, 34 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) |
| 36 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋)) |
| 37 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
| 38 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
| 39 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
| 40 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐶𝐺0) |
| 41 | heibor.13 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ 𝐽) | |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑈 ⊆ 𝐽) |
| 43 | fvex 6878 | . . 3 ⊢ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ V | |
| 44 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
| 45 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑡 ∈ 𝑈) | |
| 46 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
| 47 | 5, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46 | heiborlem8 37809 | . 2 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝜓) |
| 48 | 35, 47 | rexlimddv 3142 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3046 ∃wrex 3055 ∩ cin 3921 ⊆ wss 3922 ifcif 4496 𝒫 cpw 4571 〈cop 4603 ∪ cuni 4879 ∪ ciun 4963 class class class wbr 5115 {copab 5177 ↦ cmpt 5196 dom cdm 5646 ∘ ccom 5650 Fun wfun 6513 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 1st c1st 7975 2nd c2nd 7976 Fincfn 8922 0cc0 11086 1c1 11087 + caddc 11089 < clt 11226 − cmin 11423 / cdiv 11851 ℕcn 12197 2c2 12252 3c3 12253 ℕ0cn0 12458 ℝ+crp 12965 seqcseq 13976 ↑cexp 14036 ∞Metcxmet 21255 Metcmet 21256 ballcbl 21257 MetOpencmopn 21260 TopOnctopon 22803 ⇝𝑡clm 23119 Hauscha 23201 Cauccau 25160 CMetccmet 25161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ico 13325 df-icc 13326 df-fl 13766 df-seq 13977 df-exp 14037 df-rest 17391 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-top 22787 df-topon 22804 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lm 23122 df-haus 23208 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-cfil 25162 df-cau 25163 df-cmet 25164 |
| This theorem is referenced by: heiborlem10 37811 |
| Copyright terms: Public domain | W3C validator |