Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem9 | Structured version Visualization version GIF version |
Description: Lemma for heibor 35906. Discharge the hypotheses of heiborlem8 35903 by applying caubl 24377 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.) |
Ref | Expression |
---|---|
heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
heibor.13 | ⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
heiborlem9.14 | ⊢ (𝜑 → ∪ 𝑈 = 𝑋) |
Ref | Expression |
---|---|
heiborlem9 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | heibor.6 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
2 | cmetmet 24355 | . . . . . . 7 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
3 | metxmet 23395 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
4 | 1, 2, 3 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
5 | heibor.1 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
6 | 5 | mopntopon 23500 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
8 | heibor.3 | . . . . . . . . 9 ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | |
9 | heibor.4 | . . . . . . . . 9 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
10 | heibor.5 | . . . . . . . . 9 ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | |
11 | heibor.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | |
12 | heibor.8 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | |
13 | heibor.9 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | |
14 | heibor.10 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶𝐺0) | |
15 | heibor.11 | . . . . . . . . 9 ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | |
16 | heibor.12 | . . . . . . . . 9 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
17 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem5 35900 | . . . . . . . 8 ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
18 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem6 35901 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |
19 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem7 35902 | . . . . . . . . 9 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
20 | 19 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟) |
21 | 4, 17, 18, 20 | caubl 24377 | . . . . . . 7 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ (Cau‘𝐷)) |
22 | 5 | cmetcau 24358 | . . . . . . 7 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (1st ∘ 𝑀) ∈ (Cau‘𝐷)) → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
23 | 1, 21, 22 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
24 | 5 | methaus 23582 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
25 | 4, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Haus) |
26 | lmfun 22440 | . . . . . . 7 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
27 | funfvbrb 6910 | . . . . . . 7 ⊢ (Fun (⇝𝑡‘𝐽) → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) | |
28 | 25, 26, 27 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) |
29 | 23, 28 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
30 | lmcl 22356 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) | |
31 | 7, 29, 30 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) |
32 | heiborlem9.14 | . . . 4 ⊢ (𝜑 → ∪ 𝑈 = 𝑋) | |
33 | 31, 32 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈) |
34 | eluni2 4840 | . . 3 ⊢ (((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈 ↔ ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
35 | 33, 34 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) |
36 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋)) |
37 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
38 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
39 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
40 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐶𝐺0) |
41 | heibor.13 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ 𝐽) | |
42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑈 ⊆ 𝐽) |
43 | fvex 6769 | . . 3 ⊢ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ V | |
44 | simprr 769 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
45 | simprl 767 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑡 ∈ 𝑈) | |
46 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
47 | 5, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46 | heiborlem8 35903 | . 2 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝜓) |
48 | 35, 47 | rexlimddv 3219 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 ifcif 4456 𝒫 cpw 4530 〈cop 4564 ∪ cuni 4836 ∪ ciun 4921 class class class wbr 5070 {copab 5132 ↦ cmpt 5153 dom cdm 5580 ∘ ccom 5584 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 Fincfn 8691 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 3c3 11959 ℕ0cn0 12163 ℝ+crp 12659 seqcseq 13649 ↑cexp 13710 ∞Metcxmet 20495 Metcmet 20496 ballcbl 20497 MetOpencmopn 20500 TopOnctopon 21967 ⇝𝑡clm 22285 Hauscha 22367 Cauccau 24322 CMetccmet 24323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-icc 13015 df-fl 13440 df-seq 13650 df-exp 13711 df-rest 17050 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lm 22288 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-cfil 24324 df-cau 24325 df-cmet 24326 |
This theorem is referenced by: heiborlem10 35905 |
Copyright terms: Public domain | W3C validator |