Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem9 Structured version   Visualization version   GIF version

Theorem heiborlem9 37760
Description: Lemma for heibor 37762. Discharge the hypotheses of heiborlem8 37759 by applying caubl 25277 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
heibor.13 (𝜑𝑈𝐽)
heiborlem9.14 (𝜑 𝑈 = 𝑋)
Assertion
Ref Expression
heiborlem9 (𝜑𝜓)
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝜓,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝜓(𝑥,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem9
Dummy variables 𝑡 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.6 . . . . . . 7 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 25255 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
3 metxmet 24288 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
41, 2, 33syl 18 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 heibor.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
65mopntopon 24393 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
74, 6syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
9 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
10 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
11 heibor.7 . . . . . . . . 9 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
12 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
13 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
14 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
15 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
16 heibor.12 . . . . . . . . 9 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
175, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem5 37756 . . . . . . . 8 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
185, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem6 37757 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
195, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem7 37758 . . . . . . . . 9 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
2019a1i 11 . . . . . . . 8 (𝜑 → ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
214, 17, 18, 20caubl 25277 . . . . . . 7 (𝜑 → (1st𝑀) ∈ (Cau‘𝐷))
225cmetcau 25258 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (1st𝑀) ∈ (Cau‘𝐷)) → (1st𝑀) ∈ dom (⇝𝑡𝐽))
231, 21, 22syl2anc 584 . . . . . 6 (𝜑 → (1st𝑀) ∈ dom (⇝𝑡𝐽))
245methaus 24476 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
254, 24syl 17 . . . . . . 7 (𝜑𝐽 ∈ Haus)
26 lmfun 23334 . . . . . . 7 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
27 funfvbrb 7050 . . . . . . 7 (Fun (⇝𝑡𝐽) → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2825, 26, 273syl 18 . . . . . 6 (𝜑 → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2923, 28mpbid 232 . . . . 5 (𝜑 → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
30 lmcl 23250 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
317, 29, 30syl2anc 584 . . . 4 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
32 heiborlem9.14 . . . 4 (𝜑 𝑈 = 𝑋)
3331, 32eleqtrrd 2836 . . 3 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈)
34 eluni2 4891 . . 3 (((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈 ↔ ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
3533, 34sylib 218 . 2 (𝜑 → ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
361adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋))
3711adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
3812adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
3913adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
4014adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐶𝐺0)
41 heibor.13 . . . 4 (𝜑𝑈𝐽)
4241adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑈𝐽)
43 fvex 6898 . . 3 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ V
44 simprr 772 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
45 simprl 770 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑡𝑈)
4629adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
475, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46heiborlem8 37759 . 2 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝜓)
4835, 47rexlimddv 3148 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  {cab 2712  wral 3050  wrex 3059  cin 3930  wss 3931  ifcif 4505  𝒫 cpw 4580  cop 4612   cuni 4887   ciun 4971   class class class wbr 5123  {copab 5185  cmpt 5205  dom cdm 5665  ccom 5669  Fun wfun 6534  wf 6536  cfv 6540  (class class class)co 7412  cmpo 7414  1st c1st 7993  2nd c2nd 7994  Fincfn 8966  0cc0 11136  1c1 11137   + caddc 11139   < clt 11276  cmin 11473   / cdiv 11901  cn 12247  2c2 12302  3c3 12303  0cn0 12508  +crp 13015  seqcseq 14023  cexp 14083  ∞Metcxmet 21310  Metcmet 21311  ballcbl 21312  MetOpencmopn 21315  TopOnctopon 22863  𝑡clm 23179  Hauscha 23261  Cauccau 25222  CMetccmet 25223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-map 8849  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-n0 12509  df-z 12596  df-uz 12860  df-q 12972  df-rp 13016  df-xneg 13135  df-xadd 13136  df-xmul 13137  df-ico 13374  df-icc 13375  df-fl 13813  df-seq 14024  df-exp 14084  df-rest 17437  df-topgen 17458  df-psmet 21317  df-xmet 21318  df-met 21319  df-bl 21320  df-mopn 21321  df-fbas 21322  df-fg 21323  df-top 22847  df-topon 22864  df-bases 22899  df-cld 22972  df-ntr 22973  df-cls 22974  df-nei 23051  df-lm 23182  df-haus 23268  df-fil 23799  df-fm 23891  df-flim 23892  df-flf 23893  df-cfil 25224  df-cau 25225  df-cmet 25226
This theorem is referenced by:  heiborlem10  37761
  Copyright terms: Public domain W3C validator