Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem9 Structured version   Visualization version   GIF version

Theorem heiborlem9 37820
Description: Lemma for heibor 37822. Discharge the hypotheses of heiborlem8 37819 by applying caubl 25367 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
heibor.13 (𝜑𝑈𝐽)
heiborlem9.14 (𝜑 𝑈 = 𝑋)
Assertion
Ref Expression
heiborlem9 (𝜑𝜓)
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝜓,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝜓(𝑥,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem9
Dummy variables 𝑡 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.6 . . . . . . 7 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 25345 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
3 metxmet 24369 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
41, 2, 33syl 18 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 heibor.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
65mopntopon 24474 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
74, 6syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
9 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
10 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
11 heibor.7 . . . . . . . . 9 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
12 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
13 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
14 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
15 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
16 heibor.12 . . . . . . . . 9 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
175, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem5 37816 . . . . . . . 8 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
185, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem6 37817 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
195, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem7 37818 . . . . . . . . 9 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
2019a1i 11 . . . . . . . 8 (𝜑 → ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
214, 17, 18, 20caubl 25367 . . . . . . 7 (𝜑 → (1st𝑀) ∈ (Cau‘𝐷))
225cmetcau 25348 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (1st𝑀) ∈ (Cau‘𝐷)) → (1st𝑀) ∈ dom (⇝𝑡𝐽))
231, 21, 22syl2anc 584 . . . . . 6 (𝜑 → (1st𝑀) ∈ dom (⇝𝑡𝐽))
245methaus 24558 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
254, 24syl 17 . . . . . . 7 (𝜑𝐽 ∈ Haus)
26 lmfun 23414 . . . . . . 7 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
27 funfvbrb 7078 . . . . . . 7 (Fun (⇝𝑡𝐽) → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2825, 26, 273syl 18 . . . . . 6 (𝜑 → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2923, 28mpbid 232 . . . . 5 (𝜑 → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
30 lmcl 23330 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
317, 29, 30syl2anc 584 . . . 4 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
32 heiborlem9.14 . . . 4 (𝜑 𝑈 = 𝑋)
3331, 32eleqtrrd 2844 . . 3 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈)
34 eluni2 4919 . . 3 (((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈 ↔ ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
3533, 34sylib 218 . 2 (𝜑 → ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
361adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋))
3711adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
3812adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
3913adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
4014adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐶𝐺0)
41 heibor.13 . . . 4 (𝜑𝑈𝐽)
4241adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑈𝐽)
43 fvex 6927 . . 3 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ V
44 simprr 773 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
45 simprl 771 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑡𝑈)
4629adantr 480 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
475, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46heiborlem8 37819 . 2 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝜓)
4835, 47rexlimddv 3161 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  {cab 2714  wral 3061  wrex 3070  cin 3965  wss 3966  ifcif 4534  𝒫 cpw 4608  cop 4640   cuni 4915   ciun 4999   class class class wbr 5151  {copab 5213  cmpt 5234  dom cdm 5693  ccom 5697  Fun wfun 6563  wf 6565  cfv 6569  (class class class)co 7438  cmpo 7440  1st c1st 8020  2nd c2nd 8021  Fincfn 8993  0cc0 11162  1c1 11163   + caddc 11165   < clt 11302  cmin 11499   / cdiv 11927  cn 12273  2c2 12328  3c3 12329  0cn0 12533  +crp 13041  seqcseq 14048  cexp 14108  ∞Metcxmet 21376  Metcmet 21377  ballcbl 21378  MetOpencmopn 21381  TopOnctopon 22941  𝑡clm 23259  Hauscha 23341  Cauccau 25312  CMetccmet 25313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-pm 8877  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-z 12621  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-ico 13399  df-icc 13400  df-fl 13838  df-seq 14049  df-exp 14109  df-rest 17478  df-topgen 17499  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-fbas 21388  df-fg 21389  df-top 22925  df-topon 22942  df-bases 22978  df-cld 23052  df-ntr 23053  df-cls 23054  df-nei 23131  df-lm 23262  df-haus 23348  df-fil 23879  df-fm 23971  df-flim 23972  df-flf 23973  df-cfil 25314  df-cau 25315  df-cmet 25316
This theorem is referenced by:  heiborlem10  37821
  Copyright terms: Public domain W3C validator