Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem9 Structured version   Visualization version   GIF version

Theorem heiborlem9 36210
Description: Lemma for heibor 36212. Discharge the hypotheses of heiborlem8 36209 by applying caubl 24624 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
heibor.13 (𝜑𝑈𝐽)
heiborlem9.14 (𝜑 𝑈 = 𝑋)
Assertion
Ref Expression
heiborlem9 (𝜑𝜓)
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝜓,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝜓(𝑥,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem9
Dummy variables 𝑡 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.6 . . . . . . 7 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 24602 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
3 metxmet 23639 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
41, 2, 33syl 18 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 heibor.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
65mopntopon 23744 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
74, 6syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
9 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
10 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
11 heibor.7 . . . . . . . . 9 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
12 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
13 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
14 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
15 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
16 heibor.12 . . . . . . . . 9 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
175, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem5 36206 . . . . . . . 8 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
185, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem6 36207 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
195, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem7 36208 . . . . . . . . 9 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
2019a1i 11 . . . . . . . 8 (𝜑 → ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
214, 17, 18, 20caubl 24624 . . . . . . 7 (𝜑 → (1st𝑀) ∈ (Cau‘𝐷))
225cmetcau 24605 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (1st𝑀) ∈ (Cau‘𝐷)) → (1st𝑀) ∈ dom (⇝𝑡𝐽))
231, 21, 22syl2anc 585 . . . . . 6 (𝜑 → (1st𝑀) ∈ dom (⇝𝑡𝐽))
245methaus 23828 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
254, 24syl 17 . . . . . . 7 (𝜑𝐽 ∈ Haus)
26 lmfun 22684 . . . . . . 7 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
27 funfvbrb 6999 . . . . . . 7 (Fun (⇝𝑡𝐽) → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2825, 26, 273syl 18 . . . . . 6 (𝜑 → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2923, 28mpbid 231 . . . . 5 (𝜑 → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
30 lmcl 22600 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
317, 29, 30syl2anc 585 . . . 4 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
32 heiborlem9.14 . . . 4 (𝜑 𝑈 = 𝑋)
3331, 32eleqtrrd 2842 . . 3 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈)
34 eluni2 4868 . . 3 (((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈 ↔ ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
3533, 34sylib 217 . 2 (𝜑 → ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
361adantr 482 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋))
3711adantr 482 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
3812adantr 482 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
3913adantr 482 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
4014adantr 482 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐶𝐺0)
41 heibor.13 . . . 4 (𝜑𝑈𝐽)
4241adantr 482 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑈𝐽)
43 fvex 6853 . . 3 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ V
44 simprr 772 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
45 simprl 770 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑡𝑈)
4629adantr 482 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
475, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46heiborlem8 36209 . 2 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝜓)
4835, 47rexlimddv 3157 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2715  wral 3063  wrex 3072  cin 3908  wss 3909  ifcif 4485  𝒫 cpw 4559  cop 4591   cuni 4864   ciun 4953   class class class wbr 5104  {copab 5166  cmpt 5187  dom cdm 5632  ccom 5636  Fun wfun 6488  wf 6490  cfv 6494  (class class class)co 7352  cmpo 7354  1st c1st 7912  2nd c2nd 7913  Fincfn 8842  0cc0 11010  1c1 11011   + caddc 11013   < clt 11148  cmin 11344   / cdiv 11771  cn 12112  2c2 12167  3c3 12168  0cn0 12372  +crp 12870  seqcseq 13861  cexp 13922  ∞Metcxmet 20734  Metcmet 20735  ballcbl 20736  MetOpencmopn 20739  TopOnctopon 22211  𝑡clm 22529  Hauscha 22611  Cauccau 24569  CMetccmet 24570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-1st 7914  df-2nd 7915  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-1o 8405  df-er 8607  df-map 8726  df-pm 8727  df-en 8843  df-dom 8844  df-sdom 8845  df-fin 8846  df-sup 9337  df-inf 9338  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-div 11772  df-nn 12113  df-2 12175  df-3 12176  df-n0 12373  df-z 12459  df-uz 12723  df-q 12829  df-rp 12871  df-xneg 12988  df-xadd 12989  df-xmul 12990  df-ico 13225  df-icc 13226  df-fl 13652  df-seq 13862  df-exp 13923  df-rest 17264  df-topgen 17285  df-psmet 20741  df-xmet 20742  df-met 20743  df-bl 20744  df-mopn 20745  df-fbas 20746  df-fg 20747  df-top 22195  df-topon 22212  df-bases 22248  df-cld 22322  df-ntr 22323  df-cls 22324  df-nei 22401  df-lm 22532  df-haus 22618  df-fil 23149  df-fm 23241  df-flim 23242  df-flf 23243  df-cfil 24571  df-cau 24572  df-cmet 24573
This theorem is referenced by:  heiborlem10  36211
  Copyright terms: Public domain W3C validator