Step | Hyp | Ref
| Expression |
1 | | heibor.6 |
. . . . . . 7
β’ (π β π· β (CMetβπ)) |
2 | | cmetmet 25035 |
. . . . . . 7
β’ (π· β (CMetβπ) β π· β (Metβπ)) |
3 | | metxmet 24061 |
. . . . . . 7
β’ (π· β (Metβπ) β π· β (βMetβπ)) |
4 | 1, 2, 3 | 3syl 18 |
. . . . . 6
β’ (π β π· β (βMetβπ)) |
5 | | heibor.1 |
. . . . . . 7
β’ π½ = (MetOpenβπ·) |
6 | 5 | mopntopon 24166 |
. . . . . 6
β’ (π· β (βMetβπ) β π½ β (TopOnβπ)) |
7 | 4, 6 | syl 17 |
. . . . 5
β’ (π β π½ β (TopOnβπ)) |
8 | | heibor.3 |
. . . . . . . . 9
β’ πΎ = {π’ β£ Β¬ βπ£ β (π« π β© Fin)π’ β βͺ π£} |
9 | | heibor.4 |
. . . . . . . . 9
β’ πΊ = {β¨π¦, πβ© β£ (π β β0 β§ π¦ β (πΉβπ) β§ (π¦π΅π) β πΎ)} |
10 | | heibor.5 |
. . . . . . . . 9
β’ π΅ = (π§ β π, π β β0 β¦ (π§(ballβπ·)(1 / (2βπ)))) |
11 | | heibor.7 |
. . . . . . . . 9
β’ (π β πΉ:β0βΆ(π« π β© Fin)) |
12 | | heibor.8 |
. . . . . . . . 9
β’ (π β βπ β β0 π = βͺ π¦ β (πΉβπ)(π¦π΅π)) |
13 | | heibor.9 |
. . . . . . . . 9
β’ (π β βπ₯ β πΊ ((πβπ₯)πΊ((2nd βπ₯) + 1) β§ ((π΅βπ₯) β© ((πβπ₯)π΅((2nd βπ₯) + 1))) β πΎ)) |
14 | | heibor.10 |
. . . . . . . . 9
β’ (π β πΆπΊ0) |
15 | | heibor.11 |
. . . . . . . . 9
β’ π = seq0(π, (π β β0 β¦ if(π = 0, πΆ, (π β 1)))) |
16 | | heibor.12 |
. . . . . . . . 9
β’ π = (π β β β¦ β¨(πβπ), (3 / (2βπ))β©) |
17 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem5 36987 |
. . . . . . . 8
β’ (π β π:ββΆ(π Γ
β+)) |
18 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem6 36988 |
. . . . . . . 8
β’ (π β βπ β β ((ballβπ·)β(πβ(π + 1))) β ((ballβπ·)β(πβπ))) |
19 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem7 36989 |
. . . . . . . . 9
β’
βπ β
β+ βπ β β (2nd β(πβπ)) < π |
20 | 19 | a1i 11 |
. . . . . . . 8
β’ (π β βπ β β+ βπ β β (2nd
β(πβπ)) < π) |
21 | 4, 17, 18, 20 | caubl 25057 |
. . . . . . 7
β’ (π β (1st β
π) β (Cauβπ·)) |
22 | 5 | cmetcau 25038 |
. . . . . . 7
β’ ((π· β (CMetβπ) β§ (1st β
π) β (Cauβπ·)) β (1st
β π) β dom
(βπ‘βπ½)) |
23 | 1, 21, 22 | syl2anc 583 |
. . . . . 6
β’ (π β (1st β
π) β dom
(βπ‘βπ½)) |
24 | 5 | methaus 24250 |
. . . . . . . 8
β’ (π· β (βMetβπ) β π½ β Haus) |
25 | 4, 24 | syl 17 |
. . . . . . 7
β’ (π β π½ β Haus) |
26 | | lmfun 23106 |
. . . . . . 7
β’ (π½ β Haus β Fun
(βπ‘βπ½)) |
27 | | funfvbrb 7052 |
. . . . . . 7
β’ (Fun
(βπ‘βπ½) β ((1st β π) β dom
(βπ‘βπ½) β (1st β π)(βπ‘βπ½)((βπ‘βπ½)β(1st β
π)))) |
28 | 25, 26, 27 | 3syl 18 |
. . . . . 6
β’ (π β ((1st β
π) β dom
(βπ‘βπ½) β (1st β π)(βπ‘βπ½)((βπ‘βπ½)β(1st β
π)))) |
29 | 23, 28 | mpbid 231 |
. . . . 5
β’ (π β (1st β
π)(βπ‘βπ½)((βπ‘βπ½)β(1st β
π))) |
30 | | lmcl 23022 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ (1st β
π)(βπ‘βπ½)((βπ‘βπ½)β(1st β
π))) β
((βπ‘βπ½)β(1st β π)) β π) |
31 | 7, 29, 30 | syl2anc 583 |
. . . 4
β’ (π β
((βπ‘βπ½)β(1st β π)) β π) |
32 | | heiborlem9.14 |
. . . 4
β’ (π β βͺ π =
π) |
33 | 31, 32 | eleqtrrd 2835 |
. . 3
β’ (π β
((βπ‘βπ½)β(1st β π)) β βͺ π) |
34 | | eluni2 4912 |
. . 3
β’
(((βπ‘βπ½)β(1st β π)) β βͺ π
β βπ‘ β
π
((βπ‘βπ½)β(1st β π)) β π‘) |
35 | 33, 34 | sylib 217 |
. 2
β’ (π β βπ‘ β π ((βπ‘βπ½)β(1st β
π)) β π‘) |
36 | 1 | adantr 480 |
. . 3
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β π· β (CMetβπ)) |
37 | 11 | adantr 480 |
. . 3
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β πΉ:β0βΆ(π« π β© Fin)) |
38 | 12 | adantr 480 |
. . 3
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β βπ β β0 π = βͺ π¦ β (πΉβπ)(π¦π΅π)) |
39 | 13 | adantr 480 |
. . 3
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β βπ₯ β πΊ ((πβπ₯)πΊ((2nd βπ₯) + 1) β§ ((π΅βπ₯) β© ((πβπ₯)π΅((2nd βπ₯) + 1))) β πΎ)) |
40 | 14 | adantr 480 |
. . 3
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β πΆπΊ0) |
41 | | heibor.13 |
. . . 4
β’ (π β π β π½) |
42 | 41 | adantr 480 |
. . 3
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β π β π½) |
43 | | fvex 6904 |
. . 3
β’
((βπ‘βπ½)β(1st β π)) β V |
44 | | simprr 770 |
. . 3
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β
((βπ‘βπ½)β(1st β π)) β π‘) |
45 | | simprl 768 |
. . 3
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β π‘ β π) |
46 | 29 | adantr 480 |
. . 3
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β (1st β π)(βπ‘βπ½)((βπ‘βπ½)β(1st β
π))) |
47 | 5, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46 | heiborlem8 36990 |
. 2
β’ ((π β§ (π‘ β π β§
((βπ‘βπ½)β(1st β π)) β π‘)) β π) |
48 | 35, 47 | rexlimddv 3160 |
1
β’ (π β π) |