Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem9 Structured version   Visualization version   GIF version

Theorem heiborlem9 33943
Description: Lemma for heibor 33945. Discharge the hypotheses of heiborlem8 33942 by applying caubl 23318 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
heibor.13 (𝜑𝑈𝐽)
heiborlem9.14 (𝜑 𝑈 = 𝑋)
Assertion
Ref Expression
heiborlem9 (𝜑𝜓)
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝜓,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝜓(𝑥,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem9
Dummy variables 𝑡 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.6 . . . . . . 7 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 23296 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
3 metxmet 22352 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
41, 2, 33syl 18 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 heibor.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
65mopntopon 22457 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
74, 6syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
9 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
10 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
11 heibor.7 . . . . . . . . 9 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
12 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
13 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
14 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
15 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
16 heibor.12 . . . . . . . . 9 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
175, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem5 33939 . . . . . . . 8 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
185, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem6 33940 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
195, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem7 33941 . . . . . . . . 9 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
2019a1i 11 . . . . . . . 8 (𝜑 → ∀𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
214, 17, 18, 20caubl 23318 . . . . . . 7 (𝜑 → (1st𝑀) ∈ (Cau‘𝐷))
225cmetcau 23299 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (1st𝑀) ∈ (Cau‘𝐷)) → (1st𝑀) ∈ dom (⇝𝑡𝐽))
231, 21, 22syl2anc 573 . . . . . 6 (𝜑 → (1st𝑀) ∈ dom (⇝𝑡𝐽))
245methaus 22538 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
254, 24syl 17 . . . . . . 7 (𝜑𝐽 ∈ Haus)
26 lmfun 21399 . . . . . . 7 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
27 funfvbrb 6471 . . . . . . 7 (Fun (⇝𝑡𝐽) → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2825, 26, 273syl 18 . . . . . 6 (𝜑 → ((1st𝑀) ∈ dom (⇝𝑡𝐽) ↔ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))))
2923, 28mpbid 222 . . . . 5 (𝜑 → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
30 lmcl 21315 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀))) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
317, 29, 30syl2anc 573 . . . 4 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑋)
32 heiborlem9.14 . . . 4 (𝜑 𝑈 = 𝑋)
3331, 32eleqtrrd 2853 . . 3 (𝜑 → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈)
34 eluni2 4578 . . 3 (((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑈 ↔ ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
3533, 34sylib 208 . 2 (𝜑 → ∃𝑡𝑈 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
361adantr 466 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋))
3711adantr 466 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
3812adantr 466 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
3913adantr 466 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
4014adantr 466 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝐶𝐺0)
41 heibor.13 . . . 4 (𝜑𝑈𝐽)
4241adantr 466 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑈𝐽)
43 fvex 6340 . . 3 ((⇝𝑡𝐽)‘(1st𝑀)) ∈ V
44 simprr 756 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)
45 simprl 754 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝑡𝑈)
4629adantr 466 . . 3 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → (1st𝑀)(⇝𝑡𝐽)((⇝𝑡𝐽)‘(1st𝑀)))
475, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46heiborlem8 33942 . 2 ((𝜑 ∧ (𝑡𝑈 ∧ ((⇝𝑡𝐽)‘(1st𝑀)) ∈ 𝑡)) → 𝜓)
4835, 47rexlimddv 3183 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {cab 2757  wral 3061  wrex 3062  cin 3722  wss 3723  ifcif 4225  𝒫 cpw 4297  cop 4322   cuni 4574   ciun 4654   class class class wbr 4786  {copab 4846  cmpt 4863  dom cdm 5249  ccom 5253  Fun wfun 6023  wf 6025  cfv 6029  (class class class)co 6791  cmpt2 6793  1st c1st 7311  2nd c2nd 7312  Fincfn 8107  0cc0 10136  1c1 10137   + caddc 10139   < clt 10274  cmin 10466   / cdiv 10884  cn 11220  2c2 11270  3c3 11271  0cn0 11492  +crp 12028  seqcseq 13001  cexp 13060  ∞Metcxmt 19939  Metcme 19940  ballcbl 19941  MetOpencmopn 19944  TopOnctopon 20928  𝑡clm 21244  Hauscha 21326  Caucca 23263  CMetcms 23264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-er 7894  df-map 8009  df-pm 8010  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ico 12379  df-icc 12380  df-fl 12794  df-seq 13002  df-exp 13061  df-rest 16284  df-topgen 16305  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-top 20912  df-topon 20929  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lm 21247  df-haus 21333  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-cfil 23265  df-cau 23266  df-cmet 23267
This theorem is referenced by:  heiborlem10  33944
  Copyright terms: Public domain W3C validator