| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for heibor 37808. Discharge the hypotheses of heiborlem8 37805 by applying caubl 25241 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.) |
| Ref | Expression |
|---|---|
| heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
| heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
| heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
| heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
| heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
| heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
| heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
| heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
| heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
| heibor.13 | ⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
| heiborlem9.14 | ⊢ (𝜑 → ∪ 𝑈 = 𝑋) |
| Ref | Expression |
|---|---|
| heiborlem9 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.6 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
| 2 | cmetmet 25219 | . . . . . . 7 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 3 | metxmet 24255 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | heibor.1 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 6 | 5 | mopntopon 24360 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | heibor.3 | . . . . . . . . 9 ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | |
| 9 | heibor.4 | . . . . . . . . 9 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
| 10 | heibor.5 | . . . . . . . . 9 ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | |
| 11 | heibor.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | |
| 12 | heibor.8 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | |
| 13 | heibor.9 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | |
| 14 | heibor.10 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶𝐺0) | |
| 15 | heibor.11 | . . . . . . . . 9 ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | |
| 16 | heibor.12 | . . . . . . . . 9 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
| 17 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem5 37802 | . . . . . . . 8 ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
| 18 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem6 37803 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |
| 19 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | heiborlem7 37804 | . . . . . . . . 9 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
| 20 | 19 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟) |
| 21 | 4, 17, 18, 20 | caubl 25241 | . . . . . . 7 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ (Cau‘𝐷)) |
| 22 | 5 | cmetcau 25222 | . . . . . . 7 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (1st ∘ 𝑀) ∈ (Cau‘𝐷)) → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
| 23 | 1, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽)) |
| 24 | 5 | methaus 24441 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
| 25 | 4, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Haus) |
| 26 | lmfun 23301 | . . . . . . 7 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
| 27 | funfvbrb 7005 | . . . . . . 7 ⊢ (Fun (⇝𝑡‘𝐽) → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) | |
| 28 | 25, 26, 27 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((1st ∘ 𝑀) ∈ dom (⇝𝑡‘𝐽) ↔ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)))) |
| 29 | 23, 28 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
| 30 | lmcl 23217 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) | |
| 31 | 7, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑋) |
| 32 | heiborlem9.14 | . . . 4 ⊢ (𝜑 → ∪ 𝑈 = 𝑋) | |
| 33 | 31, 32 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈) |
| 34 | eluni2 4871 | . . 3 ⊢ (((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ ∪ 𝑈 ↔ ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
| 35 | 33, 34 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝑈 ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) |
| 36 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐷 ∈ (CMet‘𝑋)) |
| 37 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
| 38 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
| 39 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
| 40 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝐶𝐺0) |
| 41 | heibor.13 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ 𝐽) | |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑈 ⊆ 𝐽) |
| 43 | fvex 6853 | . . 3 ⊢ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ V | |
| 44 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡) | |
| 45 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝑡 ∈ 𝑈) | |
| 46 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → (1st ∘ 𝑀)(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘(1st ∘ 𝑀))) |
| 47 | 5, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46 | heiborlem8 37805 | . 2 ⊢ ((𝜑 ∧ (𝑡 ∈ 𝑈 ∧ ((⇝𝑡‘𝐽)‘(1st ∘ 𝑀)) ∈ 𝑡)) → 𝜓) |
| 48 | 35, 47 | rexlimddv 3140 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 ⊆ wss 3911 ifcif 4484 𝒫 cpw 4559 〈cop 4591 ∪ cuni 4867 ∪ ciun 4951 class class class wbr 5102 {copab 5164 ↦ cmpt 5183 dom cdm 5631 ∘ ccom 5635 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 Fincfn 8895 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 − cmin 11381 / cdiv 11811 ℕcn 12162 2c2 12217 3c3 12218 ℕ0cn0 12418 ℝ+crp 12927 seqcseq 13942 ↑cexp 14002 ∞Metcxmet 21281 Metcmet 21282 ballcbl 21283 MetOpencmopn 21286 TopOnctopon 22830 ⇝𝑡clm 23146 Hauscha 23228 Cauccau 25186 CMetccmet 25187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ico 13288 df-icc 13289 df-fl 13730 df-seq 13943 df-exp 14003 df-rest 17361 df-topgen 17382 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-top 22814 df-topon 22831 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lm 23149 df-haus 23235 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-cfil 25188 df-cau 25189 df-cmet 25190 |
| This theorem is referenced by: heiborlem10 37807 |
| Copyright terms: Public domain | W3C validator |