MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth2 Structured version   Visualization version   GIF version

Theorem bcth2 23934
Description: Baire's Category Theorem, version 2: If countably many closed sets cover 𝑋, then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypothesis
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
bcth2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝑘,𝑀   𝑘,𝑋

Proof of Theorem bcth2
StepHypRef Expression
1 simpll 766 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐷 ∈ (CMet‘𝑋))
2 simprl 770 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝑀:ℕ⟶(Clsd‘𝐽))
3 cmetmet 23890 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
43ad2antrr 725 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐷 ∈ (Met‘𝑋))
5 metxmet 22941 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6 bcth.2 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
76mopntopon 23046 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
84, 5, 73syl 18 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
9 topontop 21518 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
108, 9syl 17 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐽 ∈ Top)
11 simprr 772 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ran 𝑀 = 𝑋)
12 toponmax 21531 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
138, 12syl 17 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝑋𝐽)
1411, 13eqeltrd 2890 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ran 𝑀𝐽)
15 isopn3i 21687 . . . . 5 ((𝐽 ∈ Top ∧ ran 𝑀𝐽) → ((int‘𝐽)‘ ran 𝑀) = ran 𝑀)
1610, 14, 15syl2anc 587 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘ ran 𝑀) = ran 𝑀)
1716, 11eqtrd 2833 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘ ran 𝑀) = 𝑋)
18 simplr 768 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝑋 ≠ ∅)
1917, 18eqnetrd 3054 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘ ran 𝑀) ≠ ∅)
206bcth 23933 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
211, 2, 19, 20syl3anc 1368 1 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  c0 4243   cuni 4800  ran crn 5520  wf 6320  cfv 6324  cn 11625  ∞Metcxmet 20076  Metcmet 20077  MetOpencmopn 20081  Topctop 21498  TopOnctopon 21515  Clsdccld 21621  intcnt 21622  CMetccmet 23858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-dc 9857  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lm 21834  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-cfil 23859  df-cau 23860  df-cmet 23861
This theorem is referenced by:  ubthlem1  28653
  Copyright terms: Public domain W3C validator