| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcth2 | Structured version Visualization version GIF version | ||
| Description: Baire's Category Theorem, version 2: If countably many closed sets cover 𝑋, then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014.) |
| Ref | Expression |
|---|---|
| bcth.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| bcth2 | ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (CMet‘𝑋)) | |
| 2 | simprl 770 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑀:ℕ⟶(Clsd‘𝐽)) | |
| 3 | cmetmet 25193 | . . . . . . . 8 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 4 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (Met‘𝑋)) |
| 5 | metxmet 24228 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 6 | bcth.2 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 7 | 6 | mopntopon 24333 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | 4, 5, 7 | 3syl 18 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 9 | topontop 22806 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ Top) |
| 11 | simprr 772 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 = 𝑋) | |
| 12 | toponmax 22819 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ∈ 𝐽) |
| 14 | 11, 13 | eqeltrd 2829 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 ∈ 𝐽) |
| 15 | isopn3i 22975 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ∈ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) | |
| 16 | 10, 14, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) |
| 17 | 16, 11 | eqtrd 2765 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = 𝑋) |
| 18 | simplr 768 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ≠ ∅) | |
| 19 | 17, 18 | eqnetrd 2994 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) |
| 20 | 6 | bcth 25236 | . 2 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | 1 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∃wrex 3055 ∅c0 4304 ∪ cuni 4879 ran crn 5647 ⟶wf 6515 ‘cfv 6519 ℕcn 12197 ∞Metcxmet 21255 Metcmet 21256 MetOpencmopn 21260 Topctop 22786 TopOnctopon 22803 Clsdccld 22909 intcnt 22910 CMetccmet 25161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-dc 10417 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ico 13325 df-rest 17391 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-top 22787 df-topon 22804 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lm 23122 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-cfil 25162 df-cau 25163 df-cmet 25164 |
| This theorem is referenced by: ubthlem1 30806 |
| Copyright terms: Public domain | W3C validator |