MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth2 Structured version   Visualization version   GIF version

Theorem bcth2 25258
Description: Baire's Category Theorem, version 2: If countably many closed sets cover 𝑋, then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypothesis
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
bcth2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝑘,𝑀   𝑘,𝑋

Proof of Theorem bcth2
StepHypRef Expression
1 simpll 766 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐷 ∈ (CMet‘𝑋))
2 simprl 770 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝑀:ℕ⟶(Clsd‘𝐽))
3 cmetmet 25214 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
43ad2antrr 726 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐷 ∈ (Met‘𝑋))
5 metxmet 24250 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6 bcth.2 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
76mopntopon 24355 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
84, 5, 73syl 18 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
9 topontop 22829 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
108, 9syl 17 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐽 ∈ Top)
11 simprr 772 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ran 𝑀 = 𝑋)
12 toponmax 22842 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
138, 12syl 17 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝑋𝐽)
1411, 13eqeltrd 2831 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ran 𝑀𝐽)
15 isopn3i 22998 . . . . 5 ((𝐽 ∈ Top ∧ ran 𝑀𝐽) → ((int‘𝐽)‘ ran 𝑀) = ran 𝑀)
1610, 14, 15syl2anc 584 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘ ran 𝑀) = ran 𝑀)
1716, 11eqtrd 2766 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘ ran 𝑀) = 𝑋)
18 simplr 768 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝑋 ≠ ∅)
1917, 18eqnetrd 2995 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘ ran 𝑀) ≠ ∅)
206bcth 25257 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
211, 2, 19, 20syl3anc 1373 1 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  c0 4283   cuni 4859  ran crn 5617  wf 6477  cfv 6481  cn 12125  ∞Metcxmet 21277  Metcmet 21278  MetOpencmopn 21282  Topctop 22809  TopOnctopon 22826  Clsdccld 22932  intcnt 22933  CMetccmet 25182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-dc 10337  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-rest 17326  df-topgen 17347  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-top 22810  df-topon 22827  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lm 23145  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-cfil 25183  df-cau 25184  df-cmet 25185
This theorem is referenced by:  ubthlem1  30848
  Copyright terms: Public domain W3C validator