Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcth2 | Structured version Visualization version GIF version |
Description: Baire's Category Theorem, version 2: If countably many closed sets cover 𝑋, then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014.) |
Ref | Expression |
---|---|
bcth.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
bcth2 | ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (CMet‘𝑋)) | |
2 | simprl 768 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑀:ℕ⟶(Clsd‘𝐽)) | |
3 | cmetmet 24446 | . . . . . . . 8 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
4 | 3 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (Met‘𝑋)) |
5 | metxmet 23483 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
6 | bcth.2 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
7 | 6 | mopntopon 23588 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
8 | 4, 5, 7 | 3syl 18 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
9 | topontop 22058 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ Top) |
11 | simprr 770 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 = 𝑋) | |
12 | toponmax 22071 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ∈ 𝐽) |
14 | 11, 13 | eqeltrd 2841 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 ∈ 𝐽) |
15 | isopn3i 22229 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ∈ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) | |
16 | 10, 14, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) |
17 | 16, 11 | eqtrd 2780 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = 𝑋) |
18 | simplr 766 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ≠ ∅) | |
19 | 17, 18 | eqnetrd 3013 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) |
20 | 6 | bcth 24489 | . 2 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
21 | 1, 2, 19, 20 | syl3anc 1370 | 1 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∃wrex 3067 ∅c0 4262 ∪ cuni 4845 ran crn 5590 ⟶wf 6427 ‘cfv 6431 ℕcn 11971 ∞Metcxmet 20578 Metcmet 20579 MetOpencmopn 20583 Topctop 22038 TopOnctopon 22055 Clsdccld 22163 intcnt 22164 CMetccmet 24414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9375 ax-dc 10201 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 ax-pre-sup 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-map 8598 df-pm 8599 df-en 8715 df-dom 8716 df-sdom 8717 df-sup 9177 df-inf 9178 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-n0 12232 df-z 12318 df-uz 12580 df-q 12686 df-rp 12728 df-xneg 12845 df-xadd 12846 df-xmul 12847 df-ico 13082 df-rest 17129 df-topgen 17150 df-psmet 20585 df-xmet 20586 df-met 20587 df-bl 20588 df-mopn 20589 df-fbas 20590 df-fg 20591 df-top 22039 df-topon 22056 df-bases 22092 df-cld 22166 df-ntr 22167 df-cls 22168 df-nei 22245 df-lm 22376 df-fil 22993 df-fm 23085 df-flim 23086 df-flf 23087 df-cfil 24415 df-cau 24416 df-cmet 24417 |
This theorem is referenced by: ubthlem1 29226 |
Copyright terms: Public domain | W3C validator |