MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth2 Structured version   Visualization version   GIF version

Theorem bcth2 25386
Description: Baire's Category Theorem, version 2: If countably many closed sets cover 𝑋, then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypothesis
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
bcth2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝑘,𝑀   𝑘,𝑋

Proof of Theorem bcth2
StepHypRef Expression
1 simpll 767 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐷 ∈ (CMet‘𝑋))
2 simprl 771 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝑀:ℕ⟶(Clsd‘𝐽))
3 cmetmet 25342 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
43ad2antrr 726 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐷 ∈ (Met‘𝑋))
5 metxmet 24366 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6 bcth.2 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
76mopntopon 24471 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
84, 5, 73syl 18 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
9 topontop 22941 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
108, 9syl 17 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝐽 ∈ Top)
11 simprr 773 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ran 𝑀 = 𝑋)
12 toponmax 22954 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
138, 12syl 17 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝑋𝐽)
1411, 13eqeltrd 2840 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ran 𝑀𝐽)
15 isopn3i 23112 . . . . 5 ((𝐽 ∈ Top ∧ ran 𝑀𝐽) → ((int‘𝐽)‘ ran 𝑀) = ran 𝑀)
1610, 14, 15syl2anc 584 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘ ran 𝑀) = ran 𝑀)
1716, 11eqtrd 2776 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘ ran 𝑀) = 𝑋)
18 simplr 769 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → 𝑋 ≠ ∅)
1917, 18eqnetrd 3007 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘ ran 𝑀) ≠ ∅)
206bcth 25385 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
211, 2, 19, 20syl3anc 1371 1 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  wcel 2107  wne 2939  wrex 3069  c0 4340   cuni 4913  ran crn 5691  wf 6562  cfv 6566  cn 12270  ∞Metcxmet 21373  Metcmet 21374  MetOpencmopn 21378  Topctop 22921  TopOnctopon 22938  Clsdccld 23046  intcnt 23047  CMetccmet 25310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685  ax-dc 10490  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-er 8750  df-map 8873  df-pm 8874  df-en 8991  df-dom 8992  df-sdom 8993  df-sup 9486  df-inf 9487  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-n0 12531  df-z 12618  df-uz 12883  df-q 12995  df-rp 13039  df-xneg 13158  df-xadd 13159  df-xmul 13160  df-ico 13396  df-rest 17475  df-topgen 17496  df-psmet 21380  df-xmet 21381  df-met 21382  df-bl 21383  df-mopn 21384  df-fbas 21385  df-fg 21386  df-top 22922  df-topon 22939  df-bases 22975  df-cld 23049  df-ntr 23050  df-cls 23051  df-nei 23128  df-lm 23259  df-fil 23876  df-fm 23968  df-flim 23969  df-flf 23970  df-cfil 25311  df-cau 25312  df-cmet 25313
This theorem is referenced by:  ubthlem1  30912
  Copyright terms: Public domain W3C validator