| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcth2 | Structured version Visualization version GIF version | ||
| Description: Baire's Category Theorem, version 2: If countably many closed sets cover 𝑋, then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014.) |
| Ref | Expression |
|---|---|
| bcth.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| bcth2 | ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (CMet‘𝑋)) | |
| 2 | simprl 770 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑀:ℕ⟶(Clsd‘𝐽)) | |
| 3 | cmetmet 25214 | . . . . . . . 8 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 4 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (Met‘𝑋)) |
| 5 | metxmet 24250 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 6 | bcth.2 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 7 | 6 | mopntopon 24355 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | 4, 5, 7 | 3syl 18 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 9 | topontop 22829 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ Top) |
| 11 | simprr 772 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 = 𝑋) | |
| 12 | toponmax 22842 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ∈ 𝐽) |
| 14 | 11, 13 | eqeltrd 2831 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 ∈ 𝐽) |
| 15 | isopn3i 22998 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ∈ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) | |
| 16 | 10, 14, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) |
| 17 | 16, 11 | eqtrd 2766 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = 𝑋) |
| 18 | simplr 768 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ≠ ∅) | |
| 19 | 17, 18 | eqnetrd 2995 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) |
| 20 | 6 | bcth 25257 | . 2 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | 1 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∅c0 4283 ∪ cuni 4859 ran crn 5617 ⟶wf 6477 ‘cfv 6481 ℕcn 12125 ∞Metcxmet 21277 Metcmet 21278 MetOpencmopn 21282 Topctop 22809 TopOnctopon 22826 Clsdccld 22932 intcnt 22933 CMetccmet 25182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-dc 10337 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ico 13251 df-rest 17326 df-topgen 17347 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-top 22810 df-topon 22827 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lm 23145 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-cfil 25183 df-cau 25184 df-cmet 25185 |
| This theorem is referenced by: ubthlem1 30848 |
| Copyright terms: Public domain | W3C validator |