| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcth2 | Structured version Visualization version GIF version | ||
| Description: Baire's Category Theorem, version 2: If countably many closed sets cover 𝑋, then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014.) |
| Ref | Expression |
|---|---|
| bcth.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| bcth2 | ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (CMet‘𝑋)) | |
| 2 | simprl 770 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑀:ℕ⟶(Clsd‘𝐽)) | |
| 3 | cmetmet 25216 | . . . . . . . 8 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 4 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐷 ∈ (Met‘𝑋)) |
| 5 | metxmet 24252 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 6 | bcth.2 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 7 | 6 | mopntopon 24357 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | 4, 5, 7 | 3syl 18 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 9 | topontop 22831 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝐽 ∈ Top) |
| 11 | simprr 772 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 = 𝑋) | |
| 12 | toponmax 22844 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ∈ 𝐽) |
| 14 | 11, 13 | eqeltrd 2833 | . . . . 5 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∪ ran 𝑀 ∈ 𝐽) |
| 15 | isopn3i 23000 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ∈ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) | |
| 16 | 10, 14, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = ∪ ran 𝑀) |
| 17 | 16, 11 | eqtrd 2768 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) = 𝑋) |
| 18 | simplr 768 | . . 3 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → 𝑋 ≠ ∅) | |
| 19 | 17, 18 | eqnetrd 2996 | . 2 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) |
| 20 | 6 | bcth 25259 | . 2 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘∪ ran 𝑀) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| 21 | 1, 2, 19, 20 | syl3anc 1373 | 1 ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝑀:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝑀 = 𝑋)) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ∅c0 4282 ∪ cuni 4860 ran crn 5622 ⟶wf 6484 ‘cfv 6488 ℕcn 12134 ∞Metcxmet 21280 Metcmet 21281 MetOpencmopn 21285 Topctop 22811 TopOnctopon 22828 Clsdccld 22934 intcnt 22935 CMetccmet 25184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-dc 10346 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-ico 13255 df-rest 17330 df-topgen 17351 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-fbas 21292 df-fg 21293 df-top 22812 df-topon 22829 df-bases 22864 df-cld 22937 df-ntr 22938 df-cls 22939 df-nei 23016 df-lm 23147 df-fil 23764 df-fm 23856 df-flim 23857 df-flf 23858 df-cfil 25185 df-cau 25186 df-cmet 25187 |
| This theorem is referenced by: ubthlem1 30854 |
| Copyright terms: Public domain | W3C validator |