MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimamptfin Structured version   Visualization version   GIF version

Theorem cnvimamptfin 8819
Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi 8835, the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018.)
Hypothesis
Ref Expression
cnvimamptfin.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
cnvimamptfin (𝜑 → ((𝑝𝑁𝑋) “ 𝑌) ∈ Fin)
Distinct variable group:   𝑁,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑋(𝑝)   𝑌(𝑝)

Proof of Theorem cnvimamptfin
StepHypRef Expression
1 cnvimamptfin.n . 2 (𝜑𝑁 ∈ Fin)
2 cnvimass 5944 . . 3 ((𝑝𝑁𝑋) “ 𝑌) ⊆ dom (𝑝𝑁𝑋)
3 eqid 2821 . . . 4 (𝑝𝑁𝑋) = (𝑝𝑁𝑋)
43dmmptss 6090 . . 3 dom (𝑝𝑁𝑋) ⊆ 𝑁
52, 4sstri 3976 . 2 ((𝑝𝑁𝑋) “ 𝑌) ⊆ 𝑁
6 ssfi 8732 . 2 ((𝑁 ∈ Fin ∧ ((𝑝𝑁𝑋) “ 𝑌) ⊆ 𝑁) → ((𝑝𝑁𝑋) “ 𝑌) ∈ Fin)
71, 5, 6sylancl 588 1 (𝜑 → ((𝑝𝑁𝑋) “ 𝑌) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wss 3936  cmpt 5139  ccnv 5549  dom cdm 5550  cima 5553  Fincfn 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-om 7575  df-er 8283  df-en 8504  df-fin 8507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator