Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvimamptfin | Structured version Visualization version GIF version |
Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi 9066, the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018.) |
Ref | Expression |
---|---|
cnvimamptfin.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
Ref | Expression |
---|---|
cnvimamptfin | ⊢ (𝜑 → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimamptfin.n | . 2 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
2 | cnvimass 5978 | . . 3 ⊢ (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ⊆ dom (𝑝 ∈ 𝑁 ↦ 𝑋) | |
3 | eqid 2738 | . . . 4 ⊢ (𝑝 ∈ 𝑁 ↦ 𝑋) = (𝑝 ∈ 𝑁 ↦ 𝑋) | |
4 | 3 | dmmptss 6133 | . . 3 ⊢ dom (𝑝 ∈ 𝑁 ↦ 𝑋) ⊆ 𝑁 |
5 | 2, 4 | sstri 3926 | . 2 ⊢ (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ⊆ 𝑁 |
6 | ssfi 8918 | . 2 ⊢ ((𝑁 ∈ Fin ∧ (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ⊆ 𝑁) → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) | |
7 | 1, 5, 6 | sylancl 585 | 1 ⊢ (𝜑 → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 ↦ cmpt 5153 ◡ccnv 5579 dom cdm 5580 “ cima 5583 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |