| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvimamptfin | Structured version Visualization version GIF version | ||
| Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi 9411, the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnvimamptfin.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| Ref | Expression |
|---|---|
| cnvimamptfin | ⊢ (𝜑 → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimamptfin.n | . 2 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 2 | cnvimass 6100 | . . 3 ⊢ (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ⊆ dom (𝑝 ∈ 𝑁 ↦ 𝑋) | |
| 3 | eqid 2737 | . . . 4 ⊢ (𝑝 ∈ 𝑁 ↦ 𝑋) = (𝑝 ∈ 𝑁 ↦ 𝑋) | |
| 4 | 3 | dmmptss 6261 | . . 3 ⊢ dom (𝑝 ∈ 𝑁 ↦ 𝑋) ⊆ 𝑁 |
| 5 | 2, 4 | sstri 3993 | . 2 ⊢ (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ⊆ 𝑁 |
| 6 | ssfi 9213 | . 2 ⊢ ((𝑁 ∈ Fin ∧ (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ⊆ 𝑁) → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) | |
| 7 | 1, 5, 6 | sylancl 586 | 1 ⊢ (𝜑 → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3951 ↦ cmpt 5225 ◡ccnv 5684 dom cdm 5685 “ cima 5688 Fincfn 8985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-en 8986 df-fin 8989 |
| This theorem is referenced by: elrgspnsubrunlem2 33252 |
| Copyright terms: Public domain | W3C validator |