MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimamptfin Structured version   Visualization version   GIF version

Theorem cnvimamptfin 9363
Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi 9381, the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018.)
Hypothesis
Ref Expression
cnvimamptfin.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
cnvimamptfin (𝜑 → ((𝑝𝑁𝑋) “ 𝑌) ∈ Fin)
Distinct variable group:   𝑁,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑋(𝑝)   𝑌(𝑝)

Proof of Theorem cnvimamptfin
StepHypRef Expression
1 cnvimamptfin.n . 2 (𝜑𝑁 ∈ Fin)
2 cnvimass 6069 . . 3 ((𝑝𝑁𝑋) “ 𝑌) ⊆ dom (𝑝𝑁𝑋)
3 eqid 2735 . . . 4 (𝑝𝑁𝑋) = (𝑝𝑁𝑋)
43dmmptss 6230 . . 3 dom (𝑝𝑁𝑋) ⊆ 𝑁
52, 4sstri 3968 . 2 ((𝑝𝑁𝑋) “ 𝑌) ⊆ 𝑁
6 ssfi 9185 . 2 ((𝑁 ∈ Fin ∧ ((𝑝𝑁𝑋) “ 𝑌) ⊆ 𝑁) → ((𝑝𝑁𝑋) “ 𝑌) ∈ Fin)
71, 5, 6sylancl 586 1 (𝜑 → ((𝑝𝑁𝑋) “ 𝑌) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3926  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657  Fincfn 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-om 7860  df-1o 8478  df-en 8958  df-fin 8961
This theorem is referenced by:  elrgspnsubrunlem2  33189
  Copyright terms: Public domain W3C validator