MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimamptfin Structured version   Visualization version   GIF version

Theorem cnvimamptfin 9120
Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi 9136, the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018.)
Hypothesis
Ref Expression
cnvimamptfin.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
cnvimamptfin (𝜑 → ((𝑝𝑁𝑋) “ 𝑌) ∈ Fin)
Distinct variable group:   𝑁,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑋(𝑝)   𝑌(𝑝)

Proof of Theorem cnvimamptfin
StepHypRef Expression
1 cnvimamptfin.n . 2 (𝜑𝑁 ∈ Fin)
2 cnvimass 5989 . . 3 ((𝑝𝑁𝑋) “ 𝑌) ⊆ dom (𝑝𝑁𝑋)
3 eqid 2738 . . . 4 (𝑝𝑁𝑋) = (𝑝𝑁𝑋)
43dmmptss 6144 . . 3 dom (𝑝𝑁𝑋) ⊆ 𝑁
52, 4sstri 3930 . 2 ((𝑝𝑁𝑋) “ 𝑌) ⊆ 𝑁
6 ssfi 8956 . 2 ((𝑁 ∈ Fin ∧ ((𝑝𝑁𝑋) “ 𝑌) ⊆ 𝑁) → ((𝑝𝑁𝑋) “ 𝑌) ∈ Fin)
71, 5, 6sylancl 586 1 (𝜑 → ((𝑝𝑁𝑋) “ 𝑌) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887  cmpt 5157  ccnv 5588  dom cdm 5589  cima 5592  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator