Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvimamptfin | Structured version Visualization version GIF version |
Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi 9238, the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018.) |
Ref | Expression |
---|---|
cnvimamptfin.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
Ref | Expression |
---|---|
cnvimamptfin | ⊢ (𝜑 → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimamptfin.n | . 2 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
2 | cnvimass 6023 | . . 3 ⊢ (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ⊆ dom (𝑝 ∈ 𝑁 ↦ 𝑋) | |
3 | eqid 2737 | . . . 4 ⊢ (𝑝 ∈ 𝑁 ↦ 𝑋) = (𝑝 ∈ 𝑁 ↦ 𝑋) | |
4 | 3 | dmmptss 6183 | . . 3 ⊢ dom (𝑝 ∈ 𝑁 ↦ 𝑋) ⊆ 𝑁 |
5 | 2, 4 | sstri 3944 | . 2 ⊢ (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ⊆ 𝑁 |
6 | ssfi 9042 | . 2 ⊢ ((𝑁 ∈ Fin ∧ (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ⊆ 𝑁) → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) | |
7 | 1, 5, 6 | sylancl 587 | 1 ⊢ (𝜑 → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3901 ↦ cmpt 5179 ◡ccnv 5623 dom cdm 5624 “ cima 5627 Fincfn 8808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-om 7785 df-1o 8371 df-en 8809 df-fin 8812 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |