MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexfi Structured version   Visualization version   GIF version

Theorem abrexfi 9422
Description: An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
abrexfi (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem abrexfi
StepHypRef Expression
1 eqid 2740 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21rnmpt 5980 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
3 mptfi 9421 . . 3 (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
4 rnfi 9408 . . 3 ((𝑥𝐴𝐵) ∈ Fin → ran (𝑥𝐴𝐵) ∈ Fin)
53, 4syl 17 . 2 (𝐴 ∈ Fin → ran (𝑥𝐴𝐵) ∈ Fin)
62, 5eqeltrrid 2849 1 (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  cmpt 5249  ran crn 5701  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007
This theorem is referenced by:  fimaxre3  12241  mertenslem2  15933  iinopn  22929  cncmp  23421  cmpsublem  23428  ptbasfi  23610  alexsublem  24073  ptcmplem3  24083  prdsbl  24525  aannenlem2  26389  aalioulem2  26393  rencldnfilem  42776
  Copyright terms: Public domain W3C validator