![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abrexfi | Structured version Visualization version GIF version |
Description: An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014.) |
Ref | Expression |
---|---|
abrexfi | ⊢ (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | rnmpt 5954 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
3 | mptfi 9354 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
4 | rnfi 9338 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
6 | 2, 5 | eqeltrrid 2837 | 1 ⊢ (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {cab 2708 ∃wrex 3069 ↦ cmpt 5231 ran crn 5677 Fincfn 8942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7859 df-1st 7978 df-2nd 7979 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-fin 8946 |
This theorem is referenced by: fimaxre3 12165 mertenslem2 15836 iinopn 22625 cncmp 23117 cmpsublem 23124 ptbasfi 23306 alexsublem 23769 ptcmplem3 23779 prdsbl 24221 aannenlem2 26079 aalioulem2 26083 rencldnfilem 41861 |
Copyright terms: Public domain | W3C validator |