MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexfi Structured version   Visualization version   GIF version

Theorem abrexfi 8426
Description: An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
abrexfi (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem abrexfi
StepHypRef Expression
1 eqid 2771 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21rnmpt 5508 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
3 mptfi 8425 . . 3 (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
4 rnfi 8409 . . 3 ((𝑥𝐴𝐵) ∈ Fin → ran (𝑥𝐴𝐵) ∈ Fin)
53, 4syl 17 . 2 (𝐴 ∈ Fin → ran (𝑥𝐴𝐵) ∈ Fin)
62, 5syl5eqelr 2855 1 (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  {cab 2757  wrex 3062  cmpt 4864  ran crn 5251  Fincfn 8113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-fin 8117
This theorem is referenced by:  fimaxre3  11176  mertenslem2  14824  iinopn  20927  cncmp  21416  cmpsublem  21423  ptbasfi  21605  alexsublem  22068  ptcmplem3  22078  prdsbl  22516  aannenlem2  24304  aalioulem2  24308  rencldnfilem  37908
  Copyright terms: Public domain W3C validator