MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcpropd Structured version   Visualization version   GIF version

Theorem xpcpropd 18207
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same product category. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
xpcpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
xpcpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
xpcpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
xpcpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
xpcpropd.a (𝜑𝐴𝑉)
xpcpropd.b (𝜑𝐵𝑉)
xpcpropd.c (𝜑𝐶𝑉)
xpcpropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
xpcpropd (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷))

Proof of Theorem xpcpropd
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (𝐴 ×c 𝐶) = (𝐴 ×c 𝐶)
2 eqid 2734 . . 3 (Base‘𝐴) = (Base‘𝐴)
3 eqid 2734 . . 3 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2734 . . 3 (Hom ‘𝐴) = (Hom ‘𝐴)
5 eqid 2734 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2734 . . 3 (comp‘𝐴) = (comp‘𝐴)
7 eqid 2734 . . 3 (comp‘𝐶) = (comp‘𝐶)
8 xpcpropd.a . . 3 (𝜑𝐴𝑉)
9 xpcpropd.c . . 3 (𝜑𝐶𝑉)
10 eqidd 2735 . . 3 (𝜑 → ((Base‘𝐴) × (Base‘𝐶)) = ((Base‘𝐴) × (Base‘𝐶)))
111, 2, 3xpcbas 18177 . . . . 5 ((Base‘𝐴) × (Base‘𝐶)) = (Base‘(𝐴 ×c 𝐶))
12 eqid 2734 . . . . 5 (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐴 ×c 𝐶))
131, 11, 4, 5, 12xpchomfval 18178 . . . 4 (Hom ‘(𝐴 ×c 𝐶)) = (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐴)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣))))
1413a1i 11 . . 3 (𝜑 → (Hom ‘(𝐴 ×c 𝐶)) = (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐴)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣)))))
15 eqidd 2735 . . 3 (𝜑 → (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩)))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15xpcval 18176 . 2 (𝜑 → (𝐴 ×c 𝐶) = {⟨(Base‘ndx), ((Base‘𝐴) × (Base‘𝐶))⟩, ⟨(Hom ‘ndx), (Hom ‘(𝐴 ×c 𝐶))⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩))⟩})
17 eqid 2734 . . 3 (𝐵 ×c 𝐷) = (𝐵 ×c 𝐷)
18 eqid 2734 . . 3 (Base‘𝐵) = (Base‘𝐵)
19 eqid 2734 . . 3 (Base‘𝐷) = (Base‘𝐷)
20 eqid 2734 . . 3 (Hom ‘𝐵) = (Hom ‘𝐵)
21 eqid 2734 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
22 eqid 2734 . . 3 (comp‘𝐵) = (comp‘𝐵)
23 eqid 2734 . . 3 (comp‘𝐷) = (comp‘𝐷)
24 xpcpropd.b . . 3 (𝜑𝐵𝑉)
25 xpcpropd.d . . 3 (𝜑𝐷𝑉)
26 xpcpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2726homfeqbas 17695 . . . 4 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
28 xpcpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
2928homfeqbas 17695 . . . 4 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
3027, 29xpeq12d 5683 . . 3 (𝜑 → ((Base‘𝐴) × (Base‘𝐶)) = ((Base‘𝐵) × (Base‘𝐷)))
31263ad2ant1 1133 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (Homf𝐴) = (Homf𝐵))
32 xp1st 8015 . . . . . . . 8 (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st𝑢) ∈ (Base‘𝐴))
33323ad2ant2 1134 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (1st𝑢) ∈ (Base‘𝐴))
34 xp1st 8015 . . . . . . . 8 (𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st𝑣) ∈ (Base‘𝐴))
35343ad2ant3 1135 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (1st𝑣) ∈ (Base‘𝐴))
362, 4, 20, 31, 33, 35homfeqval 17696 . . . . . 6 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → ((1st𝑢)(Hom ‘𝐴)(1st𝑣)) = ((1st𝑢)(Hom ‘𝐵)(1st𝑣)))
37283ad2ant1 1133 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (Homf𝐶) = (Homf𝐷))
38 xp2nd 8016 . . . . . . . 8 (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd𝑢) ∈ (Base‘𝐶))
39383ad2ant2 1134 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (2nd𝑢) ∈ (Base‘𝐶))
40 xp2nd 8016 . . . . . . . 8 (𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd𝑣) ∈ (Base‘𝐶))
41403ad2ant3 1135 . . . . . . 7 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (2nd𝑣) ∈ (Base‘𝐶))
423, 5, 21, 37, 39, 41homfeqval 17696 . . . . . 6 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣)) = ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))
4336, 42xpeq12d 5683 . . . . 5 ((𝜑𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)) ∧ 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (((1st𝑢)(Hom ‘𝐴)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣))) = (((1st𝑢)(Hom ‘𝐵)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))
4443mpoeq3dva 7479 . . . 4 (𝜑 → (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐴)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐶)(2nd𝑣)))) = (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐵)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))))
4513, 44eqtrid 2781 . . 3 (𝜑 → (Hom ‘(𝐴 ×c 𝐶)) = (𝑢 ∈ ((Base‘𝐴) × (Base‘𝐶)), 𝑣 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (((1st𝑢)(Hom ‘𝐵)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))))
4626ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (Homf𝐴) = (Homf𝐵))
47 xpcpropd.2 . . . . . . . . . 10 (𝜑 → (compf𝐴) = (compf𝐵))
4847ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (compf𝐴) = (compf𝐵))
49 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))))
50 xp1st 8015 . . . . . . . . . . 11 (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))) → (1st𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)))
5149, 50syl 17 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)))
52 xp1st 8015 . . . . . . . . . 10 ((1st𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st ‘(1st𝑥)) ∈ (Base‘𝐴))
5351, 52syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st ‘(1st𝑥)) ∈ (Base‘𝐴))
54 xp2nd 8016 . . . . . . . . . . 11 (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))) → (2nd𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)))
5549, 54syl 17 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)))
56 xp1st 8015 . . . . . . . . . 10 ((2nd𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st ‘(2nd𝑥)) ∈ (Base‘𝐴))
5755, 56syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st ‘(2nd𝑥)) ∈ (Base‘𝐴))
58 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)))
59 xp1st 8015 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐴))
6058, 59syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st𝑦) ∈ (Base‘𝐴))
61 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥))
62 1st2nd2 8022 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6349, 62syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6463fveq2d 6877 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) = ((Hom ‘(𝐴 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩))
65 df-ov 7403 . . . . . . . . . . . . 13 ((1st𝑥)(Hom ‘(𝐴 ×c 𝐶))(2nd𝑥)) = ((Hom ‘(𝐴 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩)
6664, 65eqtr4di 2787 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) = ((1st𝑥)(Hom ‘(𝐴 ×c 𝐶))(2nd𝑥)))
671, 11, 4, 5, 12, 51, 55xpchom 18179 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((1st𝑥)(Hom ‘(𝐴 ×c 𝐶))(2nd𝑥)) = (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))))
6866, 67eqtrd 2769 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) = (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))))
6961, 68eleqtrd 2835 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑓 ∈ (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))))
70 xp1st 8015 . . . . . . . . . 10 (𝑓 ∈ (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))) → (1st𝑓) ∈ ((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))))
7169, 70syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st𝑓) ∈ ((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))))
72 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦))
731, 11, 4, 5, 12, 55, 58xpchom 18179 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦) = (((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)) × ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦))))
7472, 73eleqtrd 2835 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → 𝑔 ∈ (((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)) × ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦))))
75 xp1st 8015 . . . . . . . . . 10 (𝑔 ∈ (((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)) × ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦))) → (1st𝑔) ∈ ((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)))
7674, 75syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (1st𝑔) ∈ ((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)))
772, 4, 6, 22, 46, 48, 53, 57, 60, 71, 76comfeqval 17707 . . . . . . . 8 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)) = ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)))
7828ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (Homf𝐶) = (Homf𝐷))
79 xpcpropd.4 . . . . . . . . . 10 (𝜑 → (compf𝐶) = (compf𝐷))
8079ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (compf𝐶) = (compf𝐷))
81 xp2nd 8016 . . . . . . . . . 10 ((1st𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd ‘(1st𝑥)) ∈ (Base‘𝐶))
8251, 81syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd ‘(1st𝑥)) ∈ (Base‘𝐶))
83 xp2nd 8016 . . . . . . . . . 10 ((2nd𝑥) ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd ‘(2nd𝑥)) ∈ (Base‘𝐶))
8455, 83syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd ‘(2nd𝑥)) ∈ (Base‘𝐶))
85 xp2nd 8016 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
8658, 85syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
87 xp2nd 8016 . . . . . . . . . 10 (𝑓 ∈ (((1st ‘(1st𝑥))(Hom ‘𝐴)(1st ‘(2nd𝑥))) × ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥)))) → (2nd𝑓) ∈ ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥))))
8869, 87syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd𝑓) ∈ ((2nd ‘(1st𝑥))(Hom ‘𝐶)(2nd ‘(2nd𝑥))))
89 xp2nd 8016 . . . . . . . . . 10 (𝑔 ∈ (((1st ‘(2nd𝑥))(Hom ‘𝐴)(1st𝑦)) × ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦))) → (2nd𝑔) ∈ ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦)))
9074, 89syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → (2nd𝑔) ∈ ((2nd ‘(2nd𝑥))(Hom ‘𝐶)(2nd𝑦)))
913, 5, 7, 23, 78, 80, 82, 84, 86, 88, 90comfeqval 17707 . . . . . . . 8 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓)) = ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓)))
9277, 91opeq12d 4855 . . . . . . 7 (((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦)) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩ = ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)
93923impa 1109 . . . . . 6 ((((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦) ∧ 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩ = ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)
9493mpoeq3dva 7479 . . . . 5 (((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶)))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))
95943impa 1109 . . . 4 ((𝜑𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))) ∧ 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶))) → (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))
9695mpoeq3dva 7479 . . 3 (𝜑 → (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐵)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)))
9717, 18, 19, 20, 21, 22, 23, 24, 25, 30, 45, 96xpcval 18176 . 2 (𝜑 → (𝐵 ×c 𝐷) = {⟨(Base‘ndx), ((Base‘𝐴) × (Base‘𝐶))⟩, ⟨(Hom ‘ndx), (Hom ‘(𝐴 ×c 𝐶))⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝐴) × (Base‘𝐶)) × ((Base‘𝐴) × (Base‘𝐶))), 𝑦 ∈ ((Base‘𝐴) × (Base‘𝐶)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘(𝐴 ×c 𝐶))𝑦), 𝑓 ∈ ((Hom ‘(𝐴 ×c 𝐶))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐴)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐶)(2nd𝑦))(2nd𝑓))⟩))⟩})
9816, 97eqtr4d 2772 1 (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  {ctp 4603  cop 4605   × cxp 5650  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982  ndxcnx 17199  Basecbs 17215  Hom chom 17269  compcco 17270  Homf chomf 17665  compfccomf 17666   ×c cxpc 18167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-struct 17153  df-slot 17188  df-ndx 17200  df-base 17216  df-hom 17282  df-cco 17283  df-homf 17669  df-comf 17670  df-xpc 18171
This theorem is referenced by:  curfpropd  18232  oppchofcl  18259
  Copyright terms: Public domain W3C validator