MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccomfpropd Structured version   Visualization version   GIF version

Theorem oppccomfpropd 16746
Description: If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
oppchomfpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
oppccomfpropd.1 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
oppccomfpropd (𝜑 → (compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷)))

Proof of Theorem oppccomfpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2825 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2825 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2825 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
5 oppchomfpropd.1 . . . . . . 7 (𝜑 → (Homf𝐶) = (Homf𝐷))
65ad2antrr 717 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (Homf𝐶) = (Homf𝐷))
7 oppccomfpropd.1 . . . . . . 7 (𝜑 → (compf𝐶) = (compf𝐷))
87ad2antrr 717 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (compf𝐶) = (compf𝐷))
9 simplr3 1283 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑧 ∈ (Base‘𝐶))
10 simplr2 1281 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑦 ∈ (Base‘𝐶))
11 simplr1 1279 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑥 ∈ (Base‘𝐶))
12 simprr 789 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))
13 eqid 2825 . . . . . . . 8 (oppCat‘𝐶) = (oppCat‘𝐶)
142, 13oppchom 16734 . . . . . . 7 (𝑦(Hom ‘(oppCat‘𝐶))𝑧) = (𝑧(Hom ‘𝐶)𝑦)
1512, 14syl6eleq 2916 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
16 simprl 787 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦))
172, 13oppchom 16734 . . . . . . 7 (𝑥(Hom ‘(oppCat‘𝐶))𝑦) = (𝑦(Hom ‘𝐶)𝑥)
1816, 17syl6eleq 2916 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
191, 2, 3, 4, 6, 8, 9, 10, 11, 15, 18comfeqval 16727 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐷)𝑥)𝑔))
201, 3, 13, 11, 10, 9oppcco 16736 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
21 eqid 2825 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
22 eqid 2825 . . . . . 6 (oppCat‘𝐷) = (oppCat‘𝐷)
235homfeqbas 16715 . . . . . . . 8 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
2423ad2antrr 717 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (Base‘𝐶) = (Base‘𝐷))
2511, 24eleqtrd 2908 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑥 ∈ (Base‘𝐷))
2610, 24eleqtrd 2908 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑦 ∈ (Base‘𝐷))
279, 24eleqtrd 2908 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑧 ∈ (Base‘𝐷))
2821, 4, 22, 25, 26, 27oppcco 16736 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐷)𝑥)𝑔))
2919, 20, 283eqtr4d 2871 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓))
3029ralrimivva 3180 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓))
3130ralrimivvva 3181 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓))
32 eqid 2825 . . 3 (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶))
33 eqid 2825 . . 3 (comp‘(oppCat‘𝐷)) = (comp‘(oppCat‘𝐷))
34 eqid 2825 . . 3 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
3513, 1oppcbas 16737 . . . 4 (Base‘𝐶) = (Base‘(oppCat‘𝐶))
3635a1i 11 . . 3 (𝜑 → (Base‘𝐶) = (Base‘(oppCat‘𝐶)))
3722, 21oppcbas 16737 . . . 4 (Base‘𝐷) = (Base‘(oppCat‘𝐷))
3823, 37syl6eq 2877 . . 3 (𝜑 → (Base‘𝐶) = (Base‘(oppCat‘𝐷)))
395oppchomfpropd 16745 . . 3 (𝜑 → (Homf ‘(oppCat‘𝐶)) = (Homf ‘(oppCat‘𝐷)))
4032, 33, 34, 36, 38, 39comfeq 16725 . 2 (𝜑 → ((compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓)))
4131, 40mpbird 249 1 (𝜑 → (compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  cop 4405  cfv 6127  (class class class)co 6910  Basecbs 16229  Hom chom 16323  compcco 16324  Homf chomf 16686  compfccomf 16687  oppCatcoppc 16730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-hom 16336  df-cco 16337  df-homf 16690  df-comf 16691  df-oppc 16731
This theorem is referenced by:  yonpropd  17268
  Copyright terms: Public domain W3C validator