| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 2 |  | eqid 2736 | . . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) | 
| 3 |  | eqid 2736 | . . . . . 6
⊢
(comp‘𝐶) =
(comp‘𝐶) | 
| 4 |  | eqid 2736 | . . . . . 6
⊢
(comp‘𝐷) =
(comp‘𝐷) | 
| 5 |  | oppchomfpropd.1 | . . . . . . 7
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) | 
| 6 | 5 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (Homf
‘𝐶) =
(Homf ‘𝐷)) | 
| 7 |  | oppccomfpropd.1 | . . . . . . 7
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) | 
| 8 | 7 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) →
(compf‘𝐶) = (compf‘𝐷)) | 
| 9 |  | simplr3 1217 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑧 ∈ (Base‘𝐶)) | 
| 10 |  | simplr2 1216 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑦 ∈ (Base‘𝐶)) | 
| 11 |  | simplr1 1215 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑥 ∈ (Base‘𝐶)) | 
| 12 |  | simprr 772 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)) | 
| 13 |  | eqid 2736 | . . . . . . . 8
⊢
(oppCat‘𝐶) =
(oppCat‘𝐶) | 
| 14 | 2, 13 | oppchom 17759 | . . . . . . 7
⊢ (𝑦(Hom ‘(oppCat‘𝐶))𝑧) = (𝑧(Hom ‘𝐶)𝑦) | 
| 15 | 12, 14 | eleqtrdi 2850 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦)) | 
| 16 |  | simprl 770 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)) | 
| 17 | 2, 13 | oppchom 17759 | . . . . . . 7
⊢ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) = (𝑦(Hom ‘𝐶)𝑥) | 
| 18 | 16, 17 | eleqtrdi 2850 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) | 
| 19 | 1, 2, 3, 4, 6, 8, 9, 10, 11, 15, 18 | comfeqval 17752 | . . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔) = (𝑓(〈𝑧, 𝑦〉(comp‘𝐷)𝑥)𝑔)) | 
| 20 | 1, 3, 13, 11, 10, 9 | oppcco 17761 | . . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔)) | 
| 21 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) | 
| 22 |  | eqid 2736 | . . . . . 6
⊢
(oppCat‘𝐷) =
(oppCat‘𝐷) | 
| 23 | 5 | homfeqbas 17740 | . . . . . . . 8
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) | 
| 24 | 23 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (Base‘𝐶) = (Base‘𝐷)) | 
| 25 | 11, 24 | eleqtrd 2842 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑥 ∈ (Base‘𝐷)) | 
| 26 | 10, 24 | eleqtrd 2842 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑦 ∈ (Base‘𝐷)) | 
| 27 | 9, 24 | eleqtrd 2842 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑧 ∈ (Base‘𝐷)) | 
| 28 | 21, 4, 22, 25, 26, 27 | oppcco 17761 | . . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝐷)𝑥)𝑔)) | 
| 29 | 19, 20, 28 | 3eqtr4d 2786 | . . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓)) | 
| 30 | 29 | ralrimivva 3201 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓)) | 
| 31 | 30 | ralrimivvva 3204 | . 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓)) | 
| 32 |  | eqid 2736 | . . 3
⊢
(comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | 
| 33 |  | eqid 2736 | . . 3
⊢
(comp‘(oppCat‘𝐷)) = (comp‘(oppCat‘𝐷)) | 
| 34 |  | eqid 2736 | . . 3
⊢ (Hom
‘(oppCat‘𝐶)) =
(Hom ‘(oppCat‘𝐶)) | 
| 35 | 13, 1 | oppcbas 17762 | . . . 4
⊢
(Base‘𝐶) =
(Base‘(oppCat‘𝐶)) | 
| 36 | 35 | a1i 11 | . . 3
⊢ (𝜑 → (Base‘𝐶) =
(Base‘(oppCat‘𝐶))) | 
| 37 | 22, 21 | oppcbas 17762 | . . . 4
⊢
(Base‘𝐷) =
(Base‘(oppCat‘𝐷)) | 
| 38 | 23, 37 | eqtrdi 2792 | . . 3
⊢ (𝜑 → (Base‘𝐶) =
(Base‘(oppCat‘𝐷))) | 
| 39 | 5 | oppchomfpropd 17770 | . . 3
⊢ (𝜑 → (Homf
‘(oppCat‘𝐶)) =
(Homf ‘(oppCat‘𝐷))) | 
| 40 | 32, 33, 34, 36, 38, 39 | comfeq 17750 | . 2
⊢ (𝜑 →
((compf‘(oppCat‘𝐶)) =
(compf‘(oppCat‘𝐷)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓))) | 
| 41 | 31, 40 | mpbird 257 | 1
⊢ (𝜑 →
(compf‘(oppCat‘𝐶)) =
(compf‘(oppCat‘𝐷))) |