MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdssqim Structured version   Visualization version   GIF version

Theorem dvdssqim 16192
Description: Unidirectional form of dvdssq 16200. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
dvdssqim ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀↑2) ∥ (𝑁↑2)))

Proof of Theorem dvdssqim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 divides 15893 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
2 zsqcl 13776 . . . . . . 7 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℤ)
3 zsqcl 13776 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
4 dvdsmul2 15916 . . . . . . 7 (((𝑘↑2) ∈ ℤ ∧ (𝑀↑2) ∈ ℤ) → (𝑀↑2) ∥ ((𝑘↑2) · (𝑀↑2)))
52, 3, 4syl2anr 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀↑2) ∥ ((𝑘↑2) · (𝑀↑2)))
6 zcn 12254 . . . . . . 7 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
7 zcn 12254 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 sqmul 13767 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑘 · 𝑀)↑2) = ((𝑘↑2) · (𝑀↑2)))
96, 7, 8syl2anr 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀)↑2) = ((𝑘↑2) · (𝑀↑2)))
105, 9breqtrrd 5098 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀↑2) ∥ ((𝑘 · 𝑀)↑2))
11 oveq1 7262 . . . . . 6 ((𝑘 · 𝑀) = 𝑁 → ((𝑘 · 𝑀)↑2) = (𝑁↑2))
1211breq2d 5082 . . . . 5 ((𝑘 · 𝑀) = 𝑁 → ((𝑀↑2) ∥ ((𝑘 · 𝑀)↑2) ↔ (𝑀↑2) ∥ (𝑁↑2)))
1310, 12syl5ibcom 244 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
1413rexlimdva 3212 . . 3 (𝑀 ∈ ℤ → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
1514adantr 480 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
161, 15sylbid 239 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  (class class class)co 7255  cc 10800   · cmul 10807  2c2 11958  cz 12249  cexp 13710  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711  df-dvds 15892
This theorem is referenced by:  sqgcd  16198  dvdssqlem  16199  2sqcoprm  26488  2sqmod  26489
  Copyright terms: Public domain W3C validator