MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdssqim Structured version   Visualization version   GIF version

Theorem dvdssqim 16465
Description: Unidirectional form of dvdssq 16478. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
dvdssqim ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀↑2) ∥ (𝑁↑2)))

Proof of Theorem dvdssqim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 divides 16165 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
2 zsqcl 14036 . . . . . . 7 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℤ)
3 zsqcl 14036 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
4 dvdsmul2 16189 . . . . . . 7 (((𝑘↑2) ∈ ℤ ∧ (𝑀↑2) ∈ ℤ) → (𝑀↑2) ∥ ((𝑘↑2) · (𝑀↑2)))
52, 3, 4syl2anr 597 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀↑2) ∥ ((𝑘↑2) · (𝑀↑2)))
6 zcn 12473 . . . . . . 7 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
7 zcn 12473 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 sqmul 14026 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑘 · 𝑀)↑2) = ((𝑘↑2) · (𝑀↑2)))
96, 7, 8syl2anr 597 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀)↑2) = ((𝑘↑2) · (𝑀↑2)))
105, 9breqtrrd 5117 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀↑2) ∥ ((𝑘 · 𝑀)↑2))
11 oveq1 7353 . . . . . 6 ((𝑘 · 𝑀) = 𝑁 → ((𝑘 · 𝑀)↑2) = (𝑁↑2))
1211breq2d 5101 . . . . 5 ((𝑘 · 𝑀) = 𝑁 → ((𝑀↑2) ∥ ((𝑘 · 𝑀)↑2) ↔ (𝑀↑2) ∥ (𝑁↑2)))
1310, 12syl5ibcom 245 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
1413rexlimdva 3133 . . 3 (𝑀 ∈ ℤ → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
1514adantr 480 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
161, 15sylbid 240 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5089  (class class class)co 7346  cc 11004   · cmul 11011  2c2 12180  cz 12468  cexp 13968  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-exp 13969  df-dvds 16164
This theorem is referenced by:  sqgcd  16473  dvdssqlem  16477  2sqcoprm  27373  2sqmod  27374
  Copyright terms: Public domain W3C validator