![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdssqim | Structured version Visualization version GIF version |
Description: Unidirectional form of dvdssq 15660. (Contributed by Scott Fenton, 19-Apr-2014.) |
Ref | Expression |
---|---|
dvdssqim | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divides 15366 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) | |
2 | zsqcl 13235 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℤ) | |
3 | zsqcl 13235 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ) | |
4 | dvdsmul2 15388 | . . . . . . 7 ⊢ (((𝑘↑2) ∈ ℤ ∧ (𝑀↑2) ∈ ℤ) → (𝑀↑2) ∥ ((𝑘↑2) · (𝑀↑2))) | |
5 | 2, 3, 4 | syl2anr 590 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀↑2) ∥ ((𝑘↑2) · (𝑀↑2))) |
6 | zcn 11716 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
7 | zcn 11716 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
8 | sqmul 13227 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑘 · 𝑀)↑2) = ((𝑘↑2) · (𝑀↑2))) | |
9 | 6, 7, 8 | syl2anr 590 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀)↑2) = ((𝑘↑2) · (𝑀↑2))) |
10 | 5, 9 | breqtrrd 4903 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀↑2) ∥ ((𝑘 · 𝑀)↑2)) |
11 | oveq1 6917 | . . . . . 6 ⊢ ((𝑘 · 𝑀) = 𝑁 → ((𝑘 · 𝑀)↑2) = (𝑁↑2)) | |
12 | 11 | breq2d 4887 | . . . . 5 ⊢ ((𝑘 · 𝑀) = 𝑁 → ((𝑀↑2) ∥ ((𝑘 · 𝑀)↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) |
13 | 10, 12 | syl5ibcom 237 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
14 | 13 | rexlimdva 3240 | . . 3 ⊢ (𝑀 ∈ ℤ → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
15 | 14 | adantr 474 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
16 | 1, 15 | sylbid 232 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 class class class wbr 4875 (class class class)co 6910 ℂcc 10257 · cmul 10264 2c2 11413 ℤcz 11711 ↑cexp 13161 ∥ cdvds 15364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-n0 11626 df-z 11712 df-uz 11976 df-seq 13103 df-exp 13162 df-dvds 15365 |
This theorem is referenced by: sqgcd 15658 dvdssqlem 15659 2sqcoprm 30188 2sqmod 30189 |
Copyright terms: Public domain | W3C validator |