Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coskpi2 Structured version   Visualization version   GIF version

Theorem coskpi2 43388
Description: The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
coskpi2 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem coskpi2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 12362 . . . . 5 2 ∈ ℤ
2 divides 15975 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
31, 2mpan 687 . . . 4 (𝐾 ∈ ℤ → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
43biimpa 477 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
5 zcn 12334 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
6 2cnd 12061 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 2 ∈ ℂ)
7 picn 25626 . . . . . . . . . . . . . . 15 π ∈ ℂ
87a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → π ∈ ℂ)
95, 6, 8mulassd 11008 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · 2) · π) = (𝑛 · (2 · π)))
109eqcomd 2744 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
1110adantr 481 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
12 oveq1 7274 . . . . . . . . . . . 12 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · π) = (𝐾 · π))
1312adantl 482 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · π) = (𝐾 · π))
1411, 13eqtr2d 2779 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · π) = (𝑛 · (2 · π)))
1514fveq2d 6770 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(𝑛 · (2 · π))))
16 cos2kpi 25651 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(𝑛 · (2 · π))) = 1)
1716adantr 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝑛 · (2 · π))) = 1)
1815, 17eqtrd 2778 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
19183adant1 1129 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
20 iftrue 4465 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
2120eqcomd 2744 . . . . . . . 8 (2 ∥ 𝐾 → 1 = if(2 ∥ 𝐾, 1, -1))
22213ad2ant1 1132 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → 1 = if(2 ∥ 𝐾, 1, -1))
2319, 22eqtrd 2778 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
24233exp 1118 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2524adantl 482 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2625rexlimdv 3210 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
274, 26mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
28 odd2np1 16060 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
2928biimpa 477 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
306, 5mulcld 11005 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
31 1cnd 10980 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 1 ∈ ℂ)
3230, 31, 8adddird 11010 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · π) = (((2 · 𝑛) · π) + (1 · π)))
336, 5mulcomd 11006 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
3433oveq1d 7282 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = ((𝑛 · 2) · π))
3534, 9eqtrd 2778 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = (𝑛 · (2 · π)))
367mulid2i 10990 . . . . . . . . . . . . . . 15 (1 · π) = π
3736a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (1 · π) = π)
3835, 37oveq12d 7285 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) · π) + (1 · π)) = ((𝑛 · (2 · π)) + π))
39 2cn 12058 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
4039, 7mulcli 10992 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
4140a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · π) ∈ ℂ)
425, 41mulcld 11005 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) ∈ ℂ)
4342, 8addcomd 11187 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · (2 · π)) + π) = (π + (𝑛 · (2 · π))))
4432, 38, 433eqtrrd 2783 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
4544adantr 481 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
46 oveq1 7274 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4746adantl 482 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4845, 47eqtr2d 2779 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · π) = (π + (𝑛 · (2 · π))))
4948fveq2d 6770 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(π + (𝑛 · (2 · π)))))
50 cosper 25649 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑛 ∈ ℤ) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
517, 50mpan 687 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
5251adantr 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
53 cospi 25639 . . . . . . . . . 10 (cos‘π) = -1
5453a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘π) = -1)
5549, 52, 543eqtrd 2782 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
56553adant1 1129 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
57 iffalse 4468 . . . . . . . . 9 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
5857eqcomd 2744 . . . . . . . 8 (¬ 2 ∥ 𝐾 → -1 = if(2 ∥ 𝐾, 1, -1))
59583ad2ant1 1132 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → -1 = if(2 ∥ 𝐾, 1, -1))
6056, 59eqtrd 2778 . . . . . 6 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
61603exp 1118 . . . . 5 (¬ 2 ∥ 𝐾 → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6261adantl 482 . . . 4 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6362rexlimdv 3210 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
6429, 63mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
6527, 64pm2.61dan 810 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  ifcif 4459   class class class wbr 5073  cfv 6426  (class class class)co 7267  cc 10879  1c1 10882   + caddc 10884   · cmul 10886  -cneg 11216  2c2 12038  cz 12329  cosccos 15784  πcpi 15786  cdvds 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-er 8485  df-map 8604  df-pm 8605  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-fi 9157  df-sup 9188  df-inf 9189  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-q 12699  df-rp 12741  df-xneg 12858  df-xadd 12859  df-xmul 12860  df-ioo 13093  df-ioc 13094  df-ico 13095  df-icc 13096  df-fz 13250  df-fzo 13393  df-fl 13522  df-seq 13732  df-exp 13793  df-fac 13998  df-bc 14027  df-hash 14055  df-shft 14788  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-limsup 15190  df-clim 15207  df-rlim 15208  df-sum 15408  df-ef 15787  df-sin 15789  df-cos 15790  df-pi 15792  df-dvds 15974  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-hom 16996  df-cco 16997  df-rest 17143  df-topn 17144  df-0g 17162  df-gsum 17163  df-topgen 17164  df-pt 17165  df-prds 17168  df-xrs 17223  df-qtop 17228  df-imas 17229  df-xps 17231  df-mre 17305  df-mrc 17306  df-acs 17308  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-submnd 18441  df-mulg 18711  df-cntz 18933  df-cmn 19398  df-psmet 20599  df-xmet 20600  df-met 20601  df-bl 20602  df-mopn 20603  df-fbas 20604  df-fg 20605  df-cnfld 20608  df-top 22053  df-topon 22070  df-topsp 22092  df-bases 22106  df-cld 22180  df-ntr 22181  df-cls 22182  df-nei 22259  df-lp 22297  df-perf 22298  df-cn 22388  df-cnp 22389  df-haus 22476  df-tx 22723  df-hmeo 22916  df-fil 23007  df-fm 23099  df-flim 23100  df-flf 23101  df-xms 23483  df-ms 23484  df-tms 23485  df-cncf 24051  df-limc 25040  df-dv 25041
This theorem is referenced by:  sqwvfourb  43751
  Copyright terms: Public domain W3C validator