Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coskpi2 Structured version   Visualization version   GIF version

Theorem coskpi2 45392
Description: The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
coskpi2 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem coskpi2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 12627 . . . . 5 2 ∈ ℤ
2 divides 16236 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
31, 2mpan 688 . . . 4 (𝐾 ∈ ℤ → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
43biimpa 475 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
5 zcn 12596 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
6 2cnd 12323 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 2 ∈ ℂ)
7 picn 26439 . . . . . . . . . . . . . . 15 π ∈ ℂ
87a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → π ∈ ℂ)
95, 6, 8mulassd 11269 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · 2) · π) = (𝑛 · (2 · π)))
109eqcomd 2731 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
1110adantr 479 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
12 oveq1 7426 . . . . . . . . . . . 12 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · π) = (𝐾 · π))
1312adantl 480 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · π) = (𝐾 · π))
1411, 13eqtr2d 2766 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · π) = (𝑛 · (2 · π)))
1514fveq2d 6900 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(𝑛 · (2 · π))))
16 cos2kpi 26464 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(𝑛 · (2 · π))) = 1)
1716adantr 479 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝑛 · (2 · π))) = 1)
1815, 17eqtrd 2765 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
19183adant1 1127 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
20 iftrue 4536 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
2120eqcomd 2731 . . . . . . . 8 (2 ∥ 𝐾 → 1 = if(2 ∥ 𝐾, 1, -1))
22213ad2ant1 1130 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → 1 = if(2 ∥ 𝐾, 1, -1))
2319, 22eqtrd 2765 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
24233exp 1116 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2524adantl 480 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2625rexlimdv 3142 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
274, 26mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
28 odd2np1 16321 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
2928biimpa 475 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
306, 5mulcld 11266 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
31 1cnd 11241 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 1 ∈ ℂ)
3230, 31, 8adddird 11271 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · π) = (((2 · 𝑛) · π) + (1 · π)))
336, 5mulcomd 11267 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
3433oveq1d 7434 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = ((𝑛 · 2) · π))
3534, 9eqtrd 2765 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = (𝑛 · (2 · π)))
367mullidi 11251 . . . . . . . . . . . . . . 15 (1 · π) = π
3736a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (1 · π) = π)
3835, 37oveq12d 7437 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) · π) + (1 · π)) = ((𝑛 · (2 · π)) + π))
39 2cn 12320 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
4039, 7mulcli 11253 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
4140a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · π) ∈ ℂ)
425, 41mulcld 11266 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) ∈ ℂ)
4342, 8addcomd 11448 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · (2 · π)) + π) = (π + (𝑛 · (2 · π))))
4432, 38, 433eqtrrd 2770 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
4544adantr 479 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
46 oveq1 7426 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4746adantl 480 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4845, 47eqtr2d 2766 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · π) = (π + (𝑛 · (2 · π))))
4948fveq2d 6900 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(π + (𝑛 · (2 · π)))))
50 cosper 26462 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑛 ∈ ℤ) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
517, 50mpan 688 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
5251adantr 479 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
53 cospi 26452 . . . . . . . . . 10 (cos‘π) = -1
5453a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘π) = -1)
5549, 52, 543eqtrd 2769 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
56553adant1 1127 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
57 iffalse 4539 . . . . . . . . 9 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
5857eqcomd 2731 . . . . . . . 8 (¬ 2 ∥ 𝐾 → -1 = if(2 ∥ 𝐾, 1, -1))
59583ad2ant1 1130 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → -1 = if(2 ∥ 𝐾, 1, -1))
6056, 59eqtrd 2765 . . . . . 6 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
61603exp 1116 . . . . 5 (¬ 2 ∥ 𝐾 → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6261adantl 480 . . . 4 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6362rexlimdv 3142 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
6429, 63mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
6527, 64pm2.61dan 811 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3059  ifcif 4530   class class class wbr 5149  cfv 6549  (class class class)co 7419  cc 11138  1c1 11141   + caddc 11143   · cmul 11145  -cneg 11477  2c2 12300  cz 12591  cosccos 16044  πcpi 16046  cdvds 16234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-ef 16047  df-sin 16049  df-cos 16050  df-pi 16052  df-dvds 16235  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840
This theorem is referenced by:  sqwvfourb  45755
  Copyright terms: Public domain W3C validator