Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coskpi2 Structured version   Visualization version   GIF version

Theorem coskpi2 40872
Description: The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
coskpi2 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem coskpi2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 11737 . . . . 5 2 ∈ ℤ
2 divides 15359 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
31, 2mpan 683 . . . 4 (𝐾 ∈ ℤ → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
43biimpa 470 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
5 zcn 11709 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
6 2cnd 11429 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 2 ∈ ℂ)
7 picn 24611 . . . . . . . . . . . . . . 15 π ∈ ℂ
87a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → π ∈ ℂ)
95, 6, 8mulassd 10380 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · 2) · π) = (𝑛 · (2 · π)))
109eqcomd 2831 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
1110adantr 474 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
12 oveq1 6912 . . . . . . . . . . . 12 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · π) = (𝐾 · π))
1312adantl 475 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · π) = (𝐾 · π))
1411, 13eqtr2d 2862 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · π) = (𝑛 · (2 · π)))
1514fveq2d 6437 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(𝑛 · (2 · π))))
16 cos2kpi 24636 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(𝑛 · (2 · π))) = 1)
1716adantr 474 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝑛 · (2 · π))) = 1)
1815, 17eqtrd 2861 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
19183adant1 1166 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
20 iftrue 4312 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
2120eqcomd 2831 . . . . . . . 8 (2 ∥ 𝐾 → 1 = if(2 ∥ 𝐾, 1, -1))
22213ad2ant1 1169 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → 1 = if(2 ∥ 𝐾, 1, -1))
2319, 22eqtrd 2861 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
24233exp 1154 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2524adantl 475 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2625rexlimdv 3239 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
274, 26mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
28 odd2np1 15439 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
2928biimpa 470 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
306, 5mulcld 10377 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
31 1cnd 10351 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 1 ∈ ℂ)
3230, 31, 8adddird 10382 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · π) = (((2 · 𝑛) · π) + (1 · π)))
336, 5mulcomd 10378 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
3433oveq1d 6920 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = ((𝑛 · 2) · π))
3534, 9eqtrd 2861 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = (𝑛 · (2 · π)))
367mulid2i 10362 . . . . . . . . . . . . . . 15 (1 · π) = π
3736a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (1 · π) = π)
3835, 37oveq12d 6923 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) · π) + (1 · π)) = ((𝑛 · (2 · π)) + π))
39 2cn 11426 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
4039, 7mulcli 10364 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
4140a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · π) ∈ ℂ)
425, 41mulcld 10377 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) ∈ ℂ)
4342, 8addcomd 10557 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · (2 · π)) + π) = (π + (𝑛 · (2 · π))))
4432, 38, 433eqtrrd 2866 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
4544adantr 474 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
46 oveq1 6912 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4746adantl 475 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4845, 47eqtr2d 2862 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · π) = (π + (𝑛 · (2 · π))))
4948fveq2d 6437 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(π + (𝑛 · (2 · π)))))
50 cosper 24634 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑛 ∈ ℤ) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
517, 50mpan 683 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
5251adantr 474 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
53 cospi 24624 . . . . . . . . . 10 (cos‘π) = -1
5453a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘π) = -1)
5549, 52, 543eqtrd 2865 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
56553adant1 1166 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
57 iffalse 4315 . . . . . . . . 9 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
5857eqcomd 2831 . . . . . . . 8 (¬ 2 ∥ 𝐾 → -1 = if(2 ∥ 𝐾, 1, -1))
59583ad2ant1 1169 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → -1 = if(2 ∥ 𝐾, 1, -1))
6056, 59eqtrd 2861 . . . . . 6 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
61603exp 1154 . . . . 5 (¬ 2 ∥ 𝐾 → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6261adantl 475 . . . 4 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6362rexlimdv 3239 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
6429, 63mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
6527, 64pm2.61dan 849 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wrex 3118  ifcif 4306   class class class wbr 4873  cfv 6123  (class class class)co 6905  cc 10250  1c1 10253   + caddc 10255   · cmul 10257  -cneg 10586  2c2 11406  cz 11704  cosccos 15167  πcpi 15169  cdvds 15357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-dvds 15358  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030
This theorem is referenced by:  sqwvfourb  41240
  Copyright terms: Public domain W3C validator