MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsval2 Structured version   Visualization version   GIF version

Theorem dvdsval2 16176
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
dvdsval2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))

Proof of Theorem dvdsval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 divides 16175 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
213adant2 1131 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
3 zcn 12483 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
433ad2ant3 1135 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
54adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ)
6 zcn 12483 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
76adantl 481 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
8 zcn 12483 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
983ad2ant1 1133 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
109adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ)
11 simpl2 1193 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0)
125, 7, 10, 11divmul3d 11941 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘𝑁 = (𝑘 · 𝑀)))
13 eqcom 2740 . . . . . . . 8 (𝑁 = (𝑘 · 𝑀) ↔ (𝑘 · 𝑀) = 𝑁)
1412, 13bitrdi 287 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ (𝑘 · 𝑀) = 𝑁))
1514biimprd 248 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) = 𝑘))
1615impr 454 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) = 𝑘)
17 simprl 770 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → 𝑘 ∈ ℤ)
1816, 17eqeltrd 2833 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) ∈ ℤ)
1918rexlimdvaa 3136 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ))
20 simpr 484 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → (𝑁 / 𝑀) ∈ ℤ)
21 simp2 1137 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ≠ 0)
224, 9, 21divcan1d 11908 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
2322adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
24 oveq1 7362 . . . . . . 7 (𝑘 = (𝑁 / 𝑀) → (𝑘 · 𝑀) = ((𝑁 / 𝑀) · 𝑀))
2524eqeq1d 2735 . . . . . 6 (𝑘 = (𝑁 / 𝑀) → ((𝑘 · 𝑀) = 𝑁 ↔ ((𝑁 / 𝑀) · 𝑀) = 𝑁))
2625rspcev 3574 . . . . 5 (((𝑁 / 𝑀) ∈ ℤ ∧ ((𝑁 / 𝑀) · 𝑀) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)
2720, 23, 26syl2anc 584 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)
2827ex 412 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
2919, 28impbid 212 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
302, 29bitrd 279 1 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wrex 3058   class class class wbr 5095  (class class class)co 7355  cc 11014  0cc0 11016   · cmul 11021   / cdiv 11784  cz 12478  cdvds 16173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-z 12479  df-dvds 16174
This theorem is referenced by:  dvdsval3  16177  nndivdvds  16182  fsumdvds  16229  divconjdvds  16236  3dvds  16252  evend2  16278  oddp1d2  16279  fldivndvdslt  16337  bitsmod  16357  sadaddlem  16387  bitsuz  16395  divgcdz  16432  dvdsgcdidd  16458  mulgcd  16469  sqgcd  16483  lcmgcdlem  16527  mulgcddvds  16576  qredeu  16579  prmind2  16606  isprm5  16628  divgcdodd  16631  divnumden  16669  hashdvds  16696  hashgcdlem  16709  pythagtriplem19  16755  pcprendvds2  16763  pcpremul  16765  pc2dvds  16801  pcz  16803  dvdsprmpweqle  16808  pcadd  16811  pcmptdvds  16816  fldivp1  16819  pockthlem  16827  prmreclem1  16838  prmreclem3  16840  4sqlem8  16867  4sqlem9  16868  4sqlem12  16878  4sqlem14  16880  sylow1lem1  19520  sylow3lem4  19552  odadd1  19770  odadd2  19771  pgpfac1lem3  20001  prmirredlem  21419  znidomb  21508  root1eq1  26702  atantayl2  26885  efchtdvds  27106  muinv  27140  bposlem6  27237  lgseisenlem1  27323  lgsquad2lem1  27332  lgsquad3  27335  m1lgs  27336  2sqlem3  27368  2sqlem8  27374  qqhval2lem  34005  nn0prpwlem  36377  knoppndvlem8  36574  aks4d1p8d3  42189  aks4d1p8  42190  aks6d1c1  42219  aks6d1c3  42226  aks6d1c4  42227  aks6d1c2lem4  42230  aks6d1c6lem3  42275  aks6d1c6lem4  42276  unitscyglem4  42301  congrep  43080  jm2.22  43102  jm2.23  43103  proot1ex  43303  nzss  44424  etransclem9  46355  etransclem38  46384  etransclem44  46390  etransclem45  46391  divgcdoddALTV  47796  0dig2nn0o  48728
  Copyright terms: Public domain W3C validator