MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsval2 Structured version   Visualization version   GIF version

Theorem dvdsval2 15894
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
dvdsval2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))

Proof of Theorem dvdsval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 divides 15893 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
213adant2 1129 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
3 zcn 12254 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
433ad2ant3 1133 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
54adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ)
6 zcn 12254 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
76adantl 481 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
8 zcn 12254 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
983ad2ant1 1131 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
109adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ)
11 simpl2 1190 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0)
125, 7, 10, 11divmul3d 11715 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘𝑁 = (𝑘 · 𝑀)))
13 eqcom 2745 . . . . . . . 8 (𝑁 = (𝑘 · 𝑀) ↔ (𝑘 · 𝑀) = 𝑁)
1412, 13bitrdi 286 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ (𝑘 · 𝑀) = 𝑁))
1514biimprd 247 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) = 𝑘))
1615impr 454 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) = 𝑘)
17 simprl 767 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → 𝑘 ∈ ℤ)
1816, 17eqeltrd 2839 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) ∈ ℤ)
1918rexlimdvaa 3213 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ))
20 simpr 484 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → (𝑁 / 𝑀) ∈ ℤ)
21 simp2 1135 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ≠ 0)
224, 9, 21divcan1d 11682 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
2322adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
24 oveq1 7262 . . . . . . 7 (𝑘 = (𝑁 / 𝑀) → (𝑘 · 𝑀) = ((𝑁 / 𝑀) · 𝑀))
2524eqeq1d 2740 . . . . . 6 (𝑘 = (𝑁 / 𝑀) → ((𝑘 · 𝑀) = 𝑁 ↔ ((𝑁 / 𝑀) · 𝑀) = 𝑁))
2625rspcev 3552 . . . . 5 (((𝑁 / 𝑀) ∈ ℤ ∧ ((𝑁 / 𝑀) · 𝑀) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)
2720, 23, 26syl2anc 583 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)
2827ex 412 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
2919, 28impbid 211 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
302, 29bitrd 278 1 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807   / cdiv 11562  cz 12249  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-z 12250  df-dvds 15892
This theorem is referenced by:  dvdsval3  15895  nndivdvds  15900  fsumdvds  15945  divconjdvds  15952  3dvds  15968  evend2  15994  oddp1d2  15995  fldivndvdslt  16051  bitsmod  16071  sadaddlem  16101  bitsuz  16109  divgcdz  16146  dvdsgcdidd  16173  mulgcd  16184  sqgcd  16198  lcmgcdlem  16239  mulgcddvds  16288  qredeu  16291  prmind2  16318  isprm5  16340  divgcdodd  16343  divnumden  16380  hashdvds  16404  hashgcdlem  16417  pythagtriplem19  16462  pcprendvds2  16470  pcpremul  16472  pc2dvds  16508  pcz  16510  dvdsprmpweqle  16515  pcadd  16518  pcmptdvds  16523  fldivp1  16526  pockthlem  16534  prmreclem1  16545  prmreclem3  16547  4sqlem8  16574  4sqlem9  16575  4sqlem12  16585  4sqlem14  16587  sylow1lem1  19118  sylow3lem4  19150  odadd1  19364  odadd2  19365  pgpfac1lem3  19595  prmirredlem  20606  znidomb  20681  root1eq1  25813  atantayl2  25993  efchtdvds  26213  muinv  26247  bposlem6  26342  lgseisenlem1  26428  lgsquad2lem1  26437  lgsquad3  26440  m1lgs  26441  2sqlem3  26473  2sqlem8  26479  qqhval2lem  31831  nn0prpwlem  34438  knoppndvlem8  34626  aks4d1p8d3  40022  aks4d1p8  40023  congrep  40711  jm2.22  40733  jm2.23  40734  proot1ex  40942  nzss  41824  etransclem9  43674  etransclem38  43703  etransclem44  43709  etransclem45  43710  divgcdoddALTV  45022  0dig2nn0o  45847
  Copyright terms: Public domain W3C validator