| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsval2 | Structured version Visualization version GIF version | ||
| Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| Ref | Expression |
|---|---|
| dvdsval2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 16274 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) | |
| 2 | 1 | 3adant2 1131 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) |
| 3 | zcn 12601 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 4 | 3 | 3ad2ant3 1135 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 6 | zcn 12601 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
| 8 | zcn 12601 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 9 | 8 | 3ad2ant1 1133 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 10 | 9 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 11 | simpl2 1192 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0) | |
| 12 | 5, 7, 10, 11 | divmul3d 12059 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ 𝑁 = (𝑘 · 𝑀))) |
| 13 | eqcom 2741 | . . . . . . . 8 ⊢ (𝑁 = (𝑘 · 𝑀) ↔ (𝑘 · 𝑀) = 𝑁) | |
| 14 | 12, 13 | bitrdi 287 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ (𝑘 · 𝑀) = 𝑁)) |
| 15 | 14 | biimprd 248 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) = 𝑘)) |
| 16 | 15 | impr 454 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) = 𝑘) |
| 17 | simprl 770 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → 𝑘 ∈ ℤ) | |
| 18 | 16, 17 | eqeltrd 2833 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) ∈ ℤ) |
| 19 | 18 | rexlimdvaa 3143 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
| 20 | simpr 484 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → (𝑁 / 𝑀) ∈ ℤ) | |
| 21 | simp2 1137 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ≠ 0) | |
| 22 | 4, 9, 21 | divcan1d 12026 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁) |
| 24 | oveq1 7420 | . . . . . . 7 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑘 · 𝑀) = ((𝑁 / 𝑀) · 𝑀)) | |
| 25 | 24 | eqeq1d 2736 | . . . . . 6 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑘 · 𝑀) = 𝑁 ↔ ((𝑁 / 𝑀) · 𝑀) = 𝑁)) |
| 26 | 25 | rspcev 3605 | . . . . 5 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ ((𝑁 / 𝑀) · 𝑀) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁) |
| 27 | 20, 23, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁) |
| 28 | 27 | ex 412 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) |
| 29 | 19, 28 | impbid 212 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| 30 | 2, 29 | bitrd 279 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 class class class wbr 5123 (class class class)co 7413 ℂcc 11135 0cc0 11137 · cmul 11142 / cdiv 11902 ℤcz 12596 ∥ cdvds 16272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-z 12597 df-dvds 16273 |
| This theorem is referenced by: dvdsval3 16276 nndivdvds 16281 fsumdvds 16327 divconjdvds 16334 3dvds 16350 evend2 16376 oddp1d2 16377 fldivndvdslt 16435 bitsmod 16455 sadaddlem 16485 bitsuz 16493 divgcdz 16530 dvdsgcdidd 16556 mulgcd 16567 sqgcd 16581 lcmgcdlem 16625 mulgcddvds 16674 qredeu 16677 prmind2 16704 isprm5 16726 divgcdodd 16729 divnumden 16767 hashdvds 16794 hashgcdlem 16807 pythagtriplem19 16853 pcprendvds2 16861 pcpremul 16863 pc2dvds 16899 pcz 16901 dvdsprmpweqle 16906 pcadd 16909 pcmptdvds 16914 fldivp1 16917 pockthlem 16925 prmreclem1 16936 prmreclem3 16938 4sqlem8 16965 4sqlem9 16966 4sqlem12 16976 4sqlem14 16978 sylow1lem1 19584 sylow3lem4 19616 odadd1 19834 odadd2 19835 pgpfac1lem3 20065 prmirredlem 21445 znidomb 21534 root1eq1 26734 atantayl2 26917 efchtdvds 27138 muinv 27172 bposlem6 27269 lgseisenlem1 27355 lgsquad2lem1 27364 lgsquad3 27367 m1lgs 27368 2sqlem3 27400 2sqlem8 27406 qqhval2lem 33941 nn0prpwlem 36282 knoppndvlem8 36479 aks4d1p8d3 42046 aks4d1p8 42047 aks6d1c1 42076 aks6d1c3 42083 aks6d1c4 42084 aks6d1c2lem4 42087 aks6d1c6lem3 42132 aks6d1c6lem4 42133 unitscyglem4 42158 congrep 42948 jm2.22 42970 jm2.23 42971 proot1ex 43171 nzss 44293 etransclem9 46215 etransclem38 46244 etransclem44 46250 etransclem45 46251 divgcdoddALTV 47627 0dig2nn0o 48492 |
| Copyright terms: Public domain | W3C validator |