| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsval2 | Structured version Visualization version GIF version | ||
| Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| Ref | Expression |
|---|---|
| dvdsval2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 16231 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) | |
| 2 | 1 | 3adant2 1131 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) |
| 3 | zcn 12541 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 4 | 3 | 3ad2ant3 1135 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 6 | zcn 12541 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
| 8 | zcn 12541 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 9 | 8 | 3ad2ant1 1133 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 10 | 9 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 11 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0) | |
| 12 | 5, 7, 10, 11 | divmul3d 11999 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ 𝑁 = (𝑘 · 𝑀))) |
| 13 | eqcom 2737 | . . . . . . . 8 ⊢ (𝑁 = (𝑘 · 𝑀) ↔ (𝑘 · 𝑀) = 𝑁) | |
| 14 | 12, 13 | bitrdi 287 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ (𝑘 · 𝑀) = 𝑁)) |
| 15 | 14 | biimprd 248 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) = 𝑘)) |
| 16 | 15 | impr 454 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) = 𝑘) |
| 17 | simprl 770 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → 𝑘 ∈ ℤ) | |
| 18 | 16, 17 | eqeltrd 2829 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) ∈ ℤ) |
| 19 | 18 | rexlimdvaa 3136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
| 20 | simpr 484 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → (𝑁 / 𝑀) ∈ ℤ) | |
| 21 | simp2 1137 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ≠ 0) | |
| 22 | 4, 9, 21 | divcan1d 11966 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁) |
| 24 | oveq1 7397 | . . . . . . 7 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑘 · 𝑀) = ((𝑁 / 𝑀) · 𝑀)) | |
| 25 | 24 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑘 · 𝑀) = 𝑁 ↔ ((𝑁 / 𝑀) · 𝑀) = 𝑁)) |
| 26 | 25 | rspcev 3591 | . . . . 5 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ ((𝑁 / 𝑀) · 𝑀) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁) |
| 27 | 20, 23, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁) |
| 28 | 27 | ex 412 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) |
| 29 | 19, 28 | impbid 212 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| 30 | 2, 29 | bitrd 279 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 class class class wbr 5110 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 / cdiv 11842 ℤcz 12536 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-z 12537 df-dvds 16230 |
| This theorem is referenced by: dvdsval3 16233 nndivdvds 16238 fsumdvds 16285 divconjdvds 16292 3dvds 16308 evend2 16334 oddp1d2 16335 fldivndvdslt 16393 bitsmod 16413 sadaddlem 16443 bitsuz 16451 divgcdz 16488 dvdsgcdidd 16514 mulgcd 16525 sqgcd 16539 lcmgcdlem 16583 mulgcddvds 16632 qredeu 16635 prmind2 16662 isprm5 16684 divgcdodd 16687 divnumden 16725 hashdvds 16752 hashgcdlem 16765 pythagtriplem19 16811 pcprendvds2 16819 pcpremul 16821 pc2dvds 16857 pcz 16859 dvdsprmpweqle 16864 pcadd 16867 pcmptdvds 16872 fldivp1 16875 pockthlem 16883 prmreclem1 16894 prmreclem3 16896 4sqlem8 16923 4sqlem9 16924 4sqlem12 16934 4sqlem14 16936 sylow1lem1 19535 sylow3lem4 19567 odadd1 19785 odadd2 19786 pgpfac1lem3 20016 prmirredlem 21389 znidomb 21478 root1eq1 26672 atantayl2 26855 efchtdvds 27076 muinv 27110 bposlem6 27207 lgseisenlem1 27293 lgsquad2lem1 27302 lgsquad3 27305 m1lgs 27306 2sqlem3 27338 2sqlem8 27344 qqhval2lem 33978 nn0prpwlem 36317 knoppndvlem8 36514 aks4d1p8d3 42081 aks4d1p8 42082 aks6d1c1 42111 aks6d1c3 42118 aks6d1c4 42119 aks6d1c2lem4 42122 aks6d1c6lem3 42167 aks6d1c6lem4 42168 unitscyglem4 42193 congrep 42969 jm2.22 42991 jm2.23 42992 proot1ex 43192 nzss 44313 etransclem9 46248 etransclem38 46277 etransclem44 46283 etransclem45 46284 divgcdoddALTV 47687 0dig2nn0o 48606 |
| Copyright terms: Public domain | W3C validator |