| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsval2 | Structured version Visualization version GIF version | ||
| Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| Ref | Expression |
|---|---|
| dvdsval2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 16175 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) | |
| 2 | 1 | 3adant2 1131 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) |
| 3 | zcn 12483 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 4 | 3 | 3ad2ant3 1135 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 6 | zcn 12483 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
| 8 | zcn 12483 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 9 | 8 | 3ad2ant1 1133 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 10 | 9 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 11 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0) | |
| 12 | 5, 7, 10, 11 | divmul3d 11941 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ 𝑁 = (𝑘 · 𝑀))) |
| 13 | eqcom 2740 | . . . . . . . 8 ⊢ (𝑁 = (𝑘 · 𝑀) ↔ (𝑘 · 𝑀) = 𝑁) | |
| 14 | 12, 13 | bitrdi 287 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ (𝑘 · 𝑀) = 𝑁)) |
| 15 | 14 | biimprd 248 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) = 𝑘)) |
| 16 | 15 | impr 454 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) = 𝑘) |
| 17 | simprl 770 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → 𝑘 ∈ ℤ) | |
| 18 | 16, 17 | eqeltrd 2833 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) ∈ ℤ) |
| 19 | 18 | rexlimdvaa 3136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
| 20 | simpr 484 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → (𝑁 / 𝑀) ∈ ℤ) | |
| 21 | simp2 1137 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ≠ 0) | |
| 22 | 4, 9, 21 | divcan1d 11908 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁) |
| 24 | oveq1 7362 | . . . . . . 7 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑘 · 𝑀) = ((𝑁 / 𝑀) · 𝑀)) | |
| 25 | 24 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑘 · 𝑀) = 𝑁 ↔ ((𝑁 / 𝑀) · 𝑀) = 𝑁)) |
| 26 | 25 | rspcev 3574 | . . . . 5 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ ((𝑁 / 𝑀) · 𝑀) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁) |
| 27 | 20, 23, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁) |
| 28 | 27 | ex 412 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) |
| 29 | 19, 28 | impbid 212 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| 30 | 2, 29 | bitrd 279 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∃wrex 3058 class class class wbr 5095 (class class class)co 7355 ℂcc 11014 0cc0 11016 · cmul 11021 / cdiv 11784 ℤcz 12478 ∥ cdvds 16173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-z 12479 df-dvds 16174 |
| This theorem is referenced by: dvdsval3 16177 nndivdvds 16182 fsumdvds 16229 divconjdvds 16236 3dvds 16252 evend2 16278 oddp1d2 16279 fldivndvdslt 16337 bitsmod 16357 sadaddlem 16387 bitsuz 16395 divgcdz 16432 dvdsgcdidd 16458 mulgcd 16469 sqgcd 16483 lcmgcdlem 16527 mulgcddvds 16576 qredeu 16579 prmind2 16606 isprm5 16628 divgcdodd 16631 divnumden 16669 hashdvds 16696 hashgcdlem 16709 pythagtriplem19 16755 pcprendvds2 16763 pcpremul 16765 pc2dvds 16801 pcz 16803 dvdsprmpweqle 16808 pcadd 16811 pcmptdvds 16816 fldivp1 16819 pockthlem 16827 prmreclem1 16838 prmreclem3 16840 4sqlem8 16867 4sqlem9 16868 4sqlem12 16878 4sqlem14 16880 sylow1lem1 19520 sylow3lem4 19552 odadd1 19770 odadd2 19771 pgpfac1lem3 20001 prmirredlem 21419 znidomb 21508 root1eq1 26702 atantayl2 26885 efchtdvds 27106 muinv 27140 bposlem6 27237 lgseisenlem1 27323 lgsquad2lem1 27332 lgsquad3 27335 m1lgs 27336 2sqlem3 27368 2sqlem8 27374 qqhval2lem 34005 nn0prpwlem 36377 knoppndvlem8 36574 aks4d1p8d3 42189 aks4d1p8 42190 aks6d1c1 42219 aks6d1c3 42226 aks6d1c4 42227 aks6d1c2lem4 42230 aks6d1c6lem3 42275 aks6d1c6lem4 42276 unitscyglem4 42301 congrep 43080 jm2.22 43102 jm2.23 43103 proot1ex 43303 nzss 44424 etransclem9 46355 etransclem38 46384 etransclem44 46390 etransclem45 46391 divgcdoddALTV 47796 0dig2nn0o 48728 |
| Copyright terms: Public domain | W3C validator |