Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oddm1even | Structured version Visualization version GIF version |
Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
oddm1even | ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℤ) | |
2 | 1 | zcnd 12132 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℂ) |
3 | 1cnd 10679 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℂ) | |
4 | 2cnd 11757 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℂ) | |
5 | simpr 488 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
6 | 5 | zcnd 12132 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ) |
7 | 4, 6 | mulcld 10704 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℂ) |
8 | 2, 3, 7 | subadd2d 11059 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 − 1) = (2 · 𝑛) ↔ ((2 · 𝑛) + 1) = 𝑁)) |
9 | eqcom 2765 | . . . . 5 ⊢ ((𝑁 − 1) = (2 · 𝑛) ↔ (2 · 𝑛) = (𝑁 − 1)) | |
10 | 4, 6 | mulcomd 10705 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) = (𝑛 · 2)) |
11 | 10 | eqeq1d 2760 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = (𝑁 − 1) ↔ (𝑛 · 2) = (𝑁 − 1))) |
12 | 9, 11 | syl5bb 286 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 − 1) = (2 · 𝑛) ↔ (𝑛 · 2) = (𝑁 − 1))) |
13 | 8, 12 | bitr3d 284 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 · 2) = (𝑁 − 1))) |
14 | 13 | rexbidva 3220 | . 2 ⊢ (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1))) |
15 | odd2np1 15747 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
16 | 2z 12058 | . . 3 ⊢ 2 ∈ ℤ | |
17 | peano2zm 12069 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
18 | divides 15662 | . . 3 ⊢ ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1))) | |
19 | 16, 17, 18 | sylancr 590 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1))) |
20 | 14, 15, 19 | 3bitr4d 314 | 1 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 class class class wbr 5035 (class class class)co 7155 1c1 10581 + caddc 10583 · cmul 10585 − cmin 10913 2c2 11734 ℤcz 12025 ∥ cdvds 15660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-n0 11940 df-z 12026 df-dvds 15661 |
This theorem is referenced by: oddp1even 15750 oddpwp1fsum 15798 bitscmp 15842 lcmineqlem23 39644 lighneallem1 44518 lighneallem3 44520 2dvdsoddm1 44570 |
Copyright terms: Public domain | W3C validator |