Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeqzmulgcd Structured version   Visualization version   GIF version

Theorem zeqzmulgcd 15853
 Description: An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.)
Assertion
Ref Expression
zeqzmulgcd ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem zeqzmulgcd
StepHypRef Expression
1 gcddvds 15846 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2 gcdcl 15849 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
32nn0zd 12077 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
4 simpl 486 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
5 divides 15605 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑛 ∈ ℤ (𝑛 · (𝐴 gcd 𝐵)) = 𝐴))
63, 4, 5syl2anc 587 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑛 ∈ ℤ (𝑛 · (𝐴 gcd 𝐵)) = 𝐴))
7 eqcom 2808 . . . . . . 7 ((𝑛 · (𝐴 gcd 𝐵)) = 𝐴𝐴 = (𝑛 · (𝐴 gcd 𝐵)))
87a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑛 · (𝐴 gcd 𝐵)) = 𝐴𝐴 = (𝑛 · (𝐴 gcd 𝐵))))
98rexbidv 3259 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑛 ∈ ℤ (𝑛 · (𝐴 gcd 𝐵)) = 𝐴 ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵))))
109biimpd 232 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑛 ∈ ℤ (𝑛 · (𝐴 gcd 𝐵)) = 𝐴 → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵))))
116, 10sylbid 243 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵))))
1211adantrd 495 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵))))
131, 12mpd 15 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∃wrex 3110   class class class wbr 5033  (class class class)co 7139   · cmul 10535  ℤcz 11973   ∥ cdvds 15603   gcd cgcd 15837 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604  df-gcd 15838 This theorem is referenced by:  divgcdcoprmex  16004
 Copyright terms: Public domain W3C validator