MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcddiv Structured version   Visualization version   GIF version

Theorem gcddiv 16598
Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcddiv (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))

Proof of Theorem gcddiv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 12660 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
213ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3 simp1 1136 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
4 divides 16304 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴))
52, 3, 4syl2anc 583 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴))
6 simp2 1137 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
7 divides 16304 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
82, 6, 7syl2anc 583 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
95, 8anbi12d 631 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵)))
10 reeanv 3235 . . . 4 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
119, 10bitr4di 289 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵)))
12 gcdcl 16552 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 gcd 𝑏) ∈ ℕ0)
1312nn0cnd 12615 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 gcd 𝑏) ∈ ℂ)
14133adant3 1132 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝑎 gcd 𝑏) ∈ ℂ)
15 nncn 12301 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
16153ad2ant3 1135 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℂ)
17 nnne0 12327 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
18173ad2ant3 1135 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ≠ 0)
1914, 16, 18divcan4d 12076 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 gcd 𝑏) · 𝐶) / 𝐶) = (𝑎 gcd 𝑏))
20 nnnn0 12560 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℕ0)
21 mulgcdr 16597 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = ((𝑎 gcd 𝑏) · 𝐶))
2220, 21syl3an3 1165 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = ((𝑎 gcd 𝑏) · 𝐶))
2322oveq1d 7463 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 gcd 𝑏) · 𝐶) / 𝐶))
24 zcn 12644 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
25243ad2ant1 1133 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑎 ∈ ℂ)
2625, 16, 18divcan4d 12076 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 · 𝐶) / 𝐶) = 𝑎)
27 zcn 12644 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
28273ad2ant2 1134 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑏 ∈ ℂ)
2928, 16, 18divcan4d 12076 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑏 · 𝐶) / 𝐶) = 𝑏)
3026, 29oveq12d 7466 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) = (𝑎 gcd 𝑏))
3119, 23, 303eqtr4d 2790 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)))
32 oveq12 7457 . . . . . . . . . 10 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = (𝐴 gcd 𝐵))
3332oveq1d 7463 . . . . . . . . 9 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = ((𝐴 gcd 𝐵) / 𝐶))
34 oveq1 7455 . . . . . . . . . 10 ((𝑎 · 𝐶) = 𝐴 → ((𝑎 · 𝐶) / 𝐶) = (𝐴 / 𝐶))
35 oveq1 7455 . . . . . . . . . 10 ((𝑏 · 𝐶) = 𝐵 → ((𝑏 · 𝐶) / 𝐶) = (𝐵 / 𝐶))
3634, 35oveqan12d 7467 . . . . . . . . 9 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
3733, 36eqeq12d 2756 . . . . . . . 8 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) ↔ ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
3831, 37syl5ibcom 245 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
39383expa 1118 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4039expcom 413 . . . . 5 (𝐶 ∈ ℕ → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))))
4140rexlimdvv 3218 . . . 4 (𝐶 ∈ ℕ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
42413ad2ant3 1135 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4311, 42sylbid 240 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4443imp 406 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  (class class class)co 7448  cc 11182  0cc0 11184   · cmul 11189   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cdvds 16302   gcd cgcd 16540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541
This theorem is referenced by:  sqgcd  16609  expgcd  16610  divgcdodd  16757  divnumden  16795  hashgcdlem  16835  pythagtriplem19  16880
  Copyright terms: Public domain W3C validator