MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dvds Structured version   Visualization version   GIF version

Theorem 0dvds 16253
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
0dvds (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))

Proof of Theorem 0dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 12547 . . . 4 0 ∈ ℤ
2 divides 16231 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
31, 2mpan 690 . . 3 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
4 zcn 12541 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54mul01d 11380 . . . . . 6 (𝑛 ∈ ℤ → (𝑛 · 0) = 0)
6 eqtr2 2751 . . . . . 6 (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0)
75, 6sylan2 593 . . . . 5 (((𝑛 · 0) = 𝑁𝑛 ∈ ℤ) → 𝑁 = 0)
87ancoms 458 . . . 4 ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0)
98rexlimiva 3127 . . 3 (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁𝑁 = 0)
103, 9biimtrdi 253 . 2 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
11 dvds0 16248 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
121, 11ax-mp 5 . . 3 0 ∥ 0
13 breq2 5114 . . 3 (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0))
1412, 13mpbiri 258 . 2 (𝑁 = 0 → 0 ∥ 𝑁)
1510, 14impbid1 225 1 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  (class class class)co 7390  0cc0 11075   · cmul 11080  cz 12536  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-neg 11415  df-z 12537  df-dvds 16230
This theorem is referenced by:  fsumdvds  16285  dvdsabseq  16290  dfgcd2  16523  dvdssq  16544  rpdvds  16637  pcdvdstr  16854  pc2dvds  16857  mndodcongi  19480  oddvdsnn0  19481  oddvds  19484  odmulgeq  19494  odf1  19499  odf1o1  19509  gexdvds  19521  gexnnod  19525  torsubg  19791  ablsimpgfindlem1  20046  ablsimpgfindlem2  20047  znf1o  21468  dvdsexpnn0  42329  jm2.19  42989  nzss  44313
  Copyright terms: Public domain W3C validator