![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dvds | Structured version Visualization version GIF version |
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
0dvds | ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12650 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | divides 16304 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) | |
3 | 1, 2 | mpan 689 | . . 3 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) |
4 | zcn 12644 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
5 | 4 | mul01d 11489 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 0) = 0) |
6 | eqtr2 2764 | . . . . . 6 ⊢ (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0) | |
7 | 5, 6 | sylan2 592 | . . . . 5 ⊢ (((𝑛 · 0) = 𝑁 ∧ 𝑛 ∈ ℤ) → 𝑁 = 0) |
8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0) |
9 | 8 | rexlimiva 3153 | . . 3 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁 → 𝑁 = 0) |
10 | 3, 9 | biimtrdi 253 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 → 𝑁 = 0)) |
11 | dvds0 16320 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
12 | 1, 11 | ax-mp 5 | . . 3 ⊢ 0 ∥ 0 |
13 | breq2 5170 | . . 3 ⊢ (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0)) | |
14 | 12, 13 | mpbiri 258 | . 2 ⊢ (𝑁 = 0 → 0 ∥ 𝑁) |
15 | 10, 14 | impbid1 225 | 1 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 (class class class)co 7448 0cc0 11184 · cmul 11189 ℤcz 12639 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-neg 11523 df-z 12640 df-dvds 16303 |
This theorem is referenced by: fsumdvds 16356 dvdsabseq 16361 dfgcd2 16593 dvdssq 16614 rpdvds 16707 pcdvdstr 16923 pc2dvds 16926 mndodcongi 19585 oddvdsnn0 19586 oddvds 19589 odmulgeq 19599 odf1 19604 odf1o1 19614 gexdvds 19626 gexnnod 19630 torsubg 19896 ablsimpgfindlem1 20151 ablsimpgfindlem2 20152 znf1o 21593 dvdsexpnn0 42321 jm2.19 42950 nzss 44286 |
Copyright terms: Public domain | W3C validator |