MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dvds Structured version   Visualization version   GIF version

Theorem 0dvds 16189
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
0dvds (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))

Proof of Theorem 0dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 12486 . . . 4 0 ∈ ℤ
2 divides 16167 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
31, 2mpan 690 . . 3 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
4 zcn 12480 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54mul01d 11319 . . . . . 6 (𝑛 ∈ ℤ → (𝑛 · 0) = 0)
6 eqtr2 2754 . . . . . 6 (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0)
75, 6sylan2 593 . . . . 5 (((𝑛 · 0) = 𝑁𝑛 ∈ ℤ) → 𝑁 = 0)
87ancoms 458 . . . 4 ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0)
98rexlimiva 3126 . . 3 (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁𝑁 = 0)
103, 9biimtrdi 253 . 2 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
11 dvds0 16184 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
121, 11ax-mp 5 . . 3 0 ∥ 0
13 breq2 5097 . . 3 (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0))
1412, 13mpbiri 258 . 2 (𝑁 = 0 → 0 ∥ 𝑁)
1510, 14impbid1 225 1 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  (class class class)co 7352  0cc0 11013   · cmul 11018  cz 12475  cdvds 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-neg 11354  df-z 12476  df-dvds 16166
This theorem is referenced by:  fsumdvds  16221  dvdsabseq  16226  dfgcd2  16459  dvdssq  16480  rpdvds  16573  pcdvdstr  16790  pc2dvds  16793  mndodcongi  19457  oddvdsnn0  19458  oddvds  19461  odmulgeq  19471  odf1  19476  odf1o1  19486  gexdvds  19498  gexnnod  19502  torsubg  19768  ablsimpgfindlem1  20023  ablsimpgfindlem2  20024  znf1o  21490  dvdsexpnn0  42452  jm2.19  43110  nzss  44434
  Copyright terms: Public domain W3C validator