| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0dvds | Structured version Visualization version GIF version | ||
| Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| 0dvds | ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12547 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | divides 16231 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) |
| 4 | zcn 12541 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 5 | 4 | mul01d 11380 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 0) = 0) |
| 6 | eqtr2 2751 | . . . . . 6 ⊢ (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0) | |
| 7 | 5, 6 | sylan2 593 | . . . . 5 ⊢ (((𝑛 · 0) = 𝑁 ∧ 𝑛 ∈ ℤ) → 𝑁 = 0) |
| 8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0) |
| 9 | 8 | rexlimiva 3127 | . . 3 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁 → 𝑁 = 0) |
| 10 | 3, 9 | biimtrdi 253 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 → 𝑁 = 0)) |
| 11 | dvds0 16248 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
| 12 | 1, 11 | ax-mp 5 | . . 3 ⊢ 0 ∥ 0 |
| 13 | breq2 5114 | . . 3 ⊢ (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0)) | |
| 14 | 12, 13 | mpbiri 258 | . 2 ⊢ (𝑁 = 0 → 0 ∥ 𝑁) |
| 15 | 10, 14 | impbid1 225 | 1 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 (class class class)co 7390 0cc0 11075 · cmul 11080 ℤcz 12536 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-neg 11415 df-z 12537 df-dvds 16230 |
| This theorem is referenced by: fsumdvds 16285 dvdsabseq 16290 dfgcd2 16523 dvdssq 16544 rpdvds 16637 pcdvdstr 16854 pc2dvds 16857 mndodcongi 19480 oddvdsnn0 19481 oddvds 19484 odmulgeq 19494 odf1 19499 odf1o1 19509 gexdvds 19521 gexnnod 19525 torsubg 19791 ablsimpgfindlem1 20046 ablsimpgfindlem2 20047 znf1o 21468 dvdsexpnn0 42329 jm2.19 42989 nzss 44313 |
| Copyright terms: Public domain | W3C validator |