| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0dvds | Structured version Visualization version GIF version | ||
| Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| 0dvds | ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12476 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | divides 16162 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) |
| 4 | zcn 12470 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 5 | 4 | mul01d 11309 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 0) = 0) |
| 6 | eqtr2 2752 | . . . . . 6 ⊢ (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0) | |
| 7 | 5, 6 | sylan2 593 | . . . . 5 ⊢ (((𝑛 · 0) = 𝑁 ∧ 𝑛 ∈ ℤ) → 𝑁 = 0) |
| 8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0) |
| 9 | 8 | rexlimiva 3125 | . . 3 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁 → 𝑁 = 0) |
| 10 | 3, 9 | biimtrdi 253 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 → 𝑁 = 0)) |
| 11 | dvds0 16179 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
| 12 | 1, 11 | ax-mp 5 | . . 3 ⊢ 0 ∥ 0 |
| 13 | breq2 5095 | . . 3 ⊢ (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0)) | |
| 14 | 12, 13 | mpbiri 258 | . 2 ⊢ (𝑁 = 0 → 0 ∥ 𝑁) |
| 15 | 10, 14 | impbid1 225 | 1 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 (class class class)co 7346 0cc0 11003 · cmul 11008 ℤcz 12465 ∥ cdvds 16160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-neg 11344 df-z 12466 df-dvds 16161 |
| This theorem is referenced by: fsumdvds 16216 dvdsabseq 16221 dfgcd2 16454 dvdssq 16475 rpdvds 16568 pcdvdstr 16785 pc2dvds 16788 mndodcongi 19453 oddvdsnn0 19454 oddvds 19457 odmulgeq 19467 odf1 19472 odf1o1 19482 gexdvds 19494 gexnnod 19498 torsubg 19764 ablsimpgfindlem1 20019 ablsimpgfindlem2 20020 znf1o 21486 dvdsexpnn0 42366 jm2.19 43025 nzss 44349 |
| Copyright terms: Public domain | W3C validator |