![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dvds | Structured version Visualization version GIF version |
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
0dvds | โข (๐ โ โค โ (0 โฅ ๐ โ ๐ = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12566 | . . . 4 โข 0 โ โค | |
2 | divides 16196 | . . . 4 โข ((0 โ โค โง ๐ โ โค) โ (0 โฅ ๐ โ โ๐ โ โค (๐ ยท 0) = ๐)) | |
3 | 1, 2 | mpan 687 | . . 3 โข (๐ โ โค โ (0 โฅ ๐ โ โ๐ โ โค (๐ ยท 0) = ๐)) |
4 | zcn 12560 | . . . . . . 7 โข (๐ โ โค โ ๐ โ โ) | |
5 | 4 | mul01d 11410 | . . . . . 6 โข (๐ โ โค โ (๐ ยท 0) = 0) |
6 | eqtr2 2748 | . . . . . 6 โข (((๐ ยท 0) = ๐ โง (๐ ยท 0) = 0) โ ๐ = 0) | |
7 | 5, 6 | sylan2 592 | . . . . 5 โข (((๐ ยท 0) = ๐ โง ๐ โ โค) โ ๐ = 0) |
8 | 7 | ancoms 458 | . . . 4 โข ((๐ โ โค โง (๐ ยท 0) = ๐) โ ๐ = 0) |
9 | 8 | rexlimiva 3139 | . . 3 โข (โ๐ โ โค (๐ ยท 0) = ๐ โ ๐ = 0) |
10 | 3, 9 | syl6bi 253 | . 2 โข (๐ โ โค โ (0 โฅ ๐ โ ๐ = 0)) |
11 | dvds0 16212 | . . . 4 โข (0 โ โค โ 0 โฅ 0) | |
12 | 1, 11 | ax-mp 5 | . . 3 โข 0 โฅ 0 |
13 | breq2 5142 | . . 3 โข (๐ = 0 โ (0 โฅ ๐ โ 0 โฅ 0)) | |
14 | 12, 13 | mpbiri 258 | . 2 โข (๐ = 0 โ 0 โฅ ๐) |
15 | 10, 14 | impbid1 224 | 1 โข (๐ โ โค โ (0 โฅ ๐ โ ๐ = 0)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 = wceq 1533 โ wcel 2098 โwrex 3062 class class class wbr 5138 (class class class)co 7401 0cc0 11106 ยท cmul 11111 โคcz 12555 โฅ cdvds 16194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-ltxr 11250 df-neg 11444 df-z 12556 df-dvds 16195 |
This theorem is referenced by: fsumdvds 16248 dvdsabseq 16253 dfgcd2 16485 dvdssq 16501 rpdvds 16594 pcdvdstr 16808 pc2dvds 16811 mndodcongi 19453 oddvdsnn0 19454 oddvds 19457 odmulgeq 19467 odf1 19472 odf1o1 19482 gexdvds 19494 gexnnod 19498 torsubg 19764 ablsimpgfindlem1 20019 ablsimpgfindlem2 20020 znf1o 21414 dvdsexpnn0 41721 jm2.19 42221 nzss 43565 |
Copyright terms: Public domain | W3C validator |