MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dvds Structured version   Visualization version   GIF version

Theorem 0dvds 16246
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
0dvds (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))

Proof of Theorem 0dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 12540 . . . 4 0 ∈ ℤ
2 divides 16224 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
31, 2mpan 690 . . 3 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
4 zcn 12534 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54mul01d 11373 . . . . . 6 (𝑛 ∈ ℤ → (𝑛 · 0) = 0)
6 eqtr2 2750 . . . . . 6 (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0)
75, 6sylan2 593 . . . . 5 (((𝑛 · 0) = 𝑁𝑛 ∈ ℤ) → 𝑁 = 0)
87ancoms 458 . . . 4 ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0)
98rexlimiva 3126 . . 3 (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁𝑁 = 0)
103, 9biimtrdi 253 . 2 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
11 dvds0 16241 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
121, 11ax-mp 5 . . 3 0 ∥ 0
13 breq2 5111 . . 3 (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0))
1412, 13mpbiri 258 . 2 (𝑁 = 0 → 0 ∥ 𝑁)
1510, 14impbid1 225 1 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  (class class class)co 7387  0cc0 11068   · cmul 11073  cz 12529  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-neg 11408  df-z 12530  df-dvds 16223
This theorem is referenced by:  fsumdvds  16278  dvdsabseq  16283  dfgcd2  16516  dvdssq  16537  rpdvds  16630  pcdvdstr  16847  pc2dvds  16850  mndodcongi  19473  oddvdsnn0  19474  oddvds  19477  odmulgeq  19487  odf1  19492  odf1o1  19502  gexdvds  19514  gexnnod  19518  torsubg  19784  ablsimpgfindlem1  20039  ablsimpgfindlem2  20040  znf1o  21461  dvdsexpnn0  42322  jm2.19  42982  nzss  44306
  Copyright terms: Public domain W3C validator