MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeo Structured version   Visualization version   GIF version

Theorem omeo 16277
Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omeo (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))

Proof of Theorem omeo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 16252 . . . . . 6 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 2z 12507 . . . . . . 7 2 ∈ ℤ
3 divides 16165 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
42, 3mpan 690 . . . . . 6 (𝐵 ∈ ℤ → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
51, 4bi2anan9 638 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵)))
6 reeanv 3201 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
7 zsubcl 12517 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎𝑏) ∈ ℤ)
8 zcn 12476 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
9 zcn 12476 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
10 2cn 12203 . . . . . . . . . . . . 13 2 ∈ ℂ
11 subdi 11553 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
1210, 11mp3an1 1450 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
1312oveq1d 7364 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
14 mulcl 11093 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
1510, 14mpan 690 . . . . . . . . . . . 12 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
16 mulcl 11093 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
1710, 16mpan 690 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
18 ax-1cn 11067 . . . . . . . . . . . . 13 1 ∈ ℂ
19 addsub 11374 . . . . . . . . . . . . 13 (((2 · 𝑎) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
2018, 19mp3an2 1451 . . . . . . . . . . . 12 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
2115, 17, 20syl2an 596 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
22 mulcom 11095 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) = (𝑏 · 2))
2310, 22mpan 690 . . . . . . . . . . . . 13 (𝑏 ∈ ℂ → (2 · 𝑏) = (𝑏 · 2))
2423oveq2d 7365 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
2524adantl 481 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
2613, 21, 253eqtr2d 2770 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
278, 9, 26syl2an 596 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
28 oveq2 7357 . . . . . . . . . . . 12 (𝑐 = (𝑎𝑏) → (2 · 𝑐) = (2 · (𝑎𝑏)))
2928oveq1d 7364 . . . . . . . . . . 11 (𝑐 = (𝑎𝑏) → ((2 · 𝑐) + 1) = ((2 · (𝑎𝑏)) + 1))
3029eqeq1d 2731 . . . . . . . . . 10 (𝑐 = (𝑎𝑏) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2))))
3130rspcev 3577 . . . . . . . . 9 (((𝑎𝑏) ∈ ℤ ∧ ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2))) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
327, 27, 31syl2anc 584 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
33 oveq12 7358 . . . . . . . . . 10 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑎) + 1) − (𝑏 · 2)) = (𝐴𝐵))
3433eqeq2d 2740 . . . . . . . . 9 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3534rexbidv 3153 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3632, 35syl5ibcom 245 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3736rexlimivv 3171 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
386, 37sylbir 235 . . . . 5 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
395, 38biimtrdi 253 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4039imp 406 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
4140an4s 660 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
42 zsubcl 12517 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
4342ad2ant2r 747 . . 3 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (𝐴𝐵) ∈ ℤ)
44 odd2np1 16252 . . 3 ((𝐴𝐵) ∈ ℤ → (¬ 2 ∥ (𝐴𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4543, 44syl 17 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (¬ 2 ∥ (𝐴𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4641, 45mpbird 257 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5092  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  2c2 12183  cz 12471  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-dvds 16164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator