MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeo Structured version   Visualization version   GIF version

Theorem omeo 16248
Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omeo (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))

Proof of Theorem omeo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 16223 . . . . . 6 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 2z 12535 . . . . . . 7 2 ∈ ℤ
3 divides 16138 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
42, 3mpan 688 . . . . . 6 (𝐵 ∈ ℤ → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
51, 4bi2anan9 637 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵)))
6 reeanv 3217 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
7 zsubcl 12545 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎𝑏) ∈ ℤ)
8 zcn 12504 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
9 zcn 12504 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
10 2cn 12228 . . . . . . . . . . . . 13 2 ∈ ℂ
11 subdi 11588 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
1210, 11mp3an1 1448 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
1312oveq1d 7372 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
14 mulcl 11135 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
1510, 14mpan 688 . . . . . . . . . . . 12 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
16 mulcl 11135 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
1710, 16mpan 688 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
18 ax-1cn 11109 . . . . . . . . . . . . 13 1 ∈ ℂ
19 addsub 11412 . . . . . . . . . . . . 13 (((2 · 𝑎) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
2018, 19mp3an2 1449 . . . . . . . . . . . 12 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
2115, 17, 20syl2an 596 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
22 mulcom 11137 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) = (𝑏 · 2))
2310, 22mpan 688 . . . . . . . . . . . . 13 (𝑏 ∈ ℂ → (2 · 𝑏) = (𝑏 · 2))
2423oveq2d 7373 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
2524adantl 482 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
2613, 21, 253eqtr2d 2782 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
278, 9, 26syl2an 596 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
28 oveq2 7365 . . . . . . . . . . . 12 (𝑐 = (𝑎𝑏) → (2 · 𝑐) = (2 · (𝑎𝑏)))
2928oveq1d 7372 . . . . . . . . . . 11 (𝑐 = (𝑎𝑏) → ((2 · 𝑐) + 1) = ((2 · (𝑎𝑏)) + 1))
3029eqeq1d 2738 . . . . . . . . . 10 (𝑐 = (𝑎𝑏) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2))))
3130rspcev 3581 . . . . . . . . 9 (((𝑎𝑏) ∈ ℤ ∧ ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2))) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
327, 27, 31syl2anc 584 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
33 oveq12 7366 . . . . . . . . . 10 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑎) + 1) − (𝑏 · 2)) = (𝐴𝐵))
3433eqeq2d 2747 . . . . . . . . 9 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3534rexbidv 3175 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3632, 35syl5ibcom 244 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3736rexlimivv 3196 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
386, 37sylbir 234 . . . . 5 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
395, 38syl6bi 252 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4039imp 407 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
4140an4s 658 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
42 zsubcl 12545 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
4342ad2ant2r 745 . . 3 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (𝐴𝐵) ∈ ℤ)
44 odd2np1 16223 . . 3 ((𝐴𝐵) ∈ ℤ → (¬ 2 ∥ (𝐴𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4543, 44syl 17 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (¬ 2 ∥ (𝐴𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4641, 45mpbird 256 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  2c2 12208  cz 12499  cdvds 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-dvds 16137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator