MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeo Structured version   Visualization version   GIF version

Theorem omeo 15707
Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omeo (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))

Proof of Theorem omeo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 15682 . . . . . 6 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 2z 12006 . . . . . . 7 2 ∈ ℤ
3 divides 15601 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
42, 3mpan 686 . . . . . 6 (𝐵 ∈ ℤ → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
51, 4bi2anan9 635 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵)))
6 reeanv 3372 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
7 zsubcl 12016 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎𝑏) ∈ ℤ)
8 zcn 11978 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
9 zcn 11978 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
10 2cn 11704 . . . . . . . . . . . . 13 2 ∈ ℂ
11 subdi 11065 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
1210, 11mp3an1 1441 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
1312oveq1d 7166 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
14 mulcl 10613 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
1510, 14mpan 686 . . . . . . . . . . . 12 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
16 mulcl 10613 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
1710, 16mpan 686 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
18 ax-1cn 10587 . . . . . . . . . . . . 13 1 ∈ ℂ
19 addsub 10889 . . . . . . . . . . . . 13 (((2 · 𝑎) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
2018, 19mp3an2 1442 . . . . . . . . . . . 12 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
2115, 17, 20syl2an 595 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
22 mulcom 10615 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) = (𝑏 · 2))
2310, 22mpan 686 . . . . . . . . . . . . 13 (𝑏 ∈ ℂ → (2 · 𝑏) = (𝑏 · 2))
2423oveq2d 7167 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
2524adantl 482 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
2613, 21, 253eqtr2d 2866 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
278, 9, 26syl2an 595 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
28 oveq2 7159 . . . . . . . . . . . 12 (𝑐 = (𝑎𝑏) → (2 · 𝑐) = (2 · (𝑎𝑏)))
2928oveq1d 7166 . . . . . . . . . . 11 (𝑐 = (𝑎𝑏) → ((2 · 𝑐) + 1) = ((2 · (𝑎𝑏)) + 1))
3029eqeq1d 2827 . . . . . . . . . 10 (𝑐 = (𝑎𝑏) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2))))
3130rspcev 3626 . . . . . . . . 9 (((𝑎𝑏) ∈ ℤ ∧ ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2))) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
327, 27, 31syl2anc 584 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
33 oveq12 7160 . . . . . . . . . 10 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑎) + 1) − (𝑏 · 2)) = (𝐴𝐵))
3433eqeq2d 2836 . . . . . . . . 9 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3534rexbidv 3301 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3632, 35syl5ibcom 246 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3736rexlimivv 3296 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
386, 37sylbir 236 . . . . 5 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
395, 38syl6bi 254 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4039imp 407 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
4140an4s 656 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
42 zsubcl 12016 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
4342ad2ant2r 743 . . 3 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (𝐴𝐵) ∈ ℤ)
44 odd2np1 15682 . . 3 ((𝐴𝐵) ∈ ℤ → (¬ 2 ∥ (𝐴𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4543, 44syl 17 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (¬ 2 ∥ (𝐴𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4641, 45mpbird 258 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3143   class class class wbr 5062  (class class class)co 7151  cc 10527  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862  2c2 11684  cz 11973  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-dvds 15600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator