Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosknegpi Structured version   Visualization version   GIF version

Theorem cosknegpi 45884
Description: The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
cosknegpi (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem cosknegpi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 2 ∥ 𝐾)
2 2z 12649 . . . . 5 2 ∈ ℤ
3 simpl 482 . . . . 5 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 𝐾 ∈ ℤ)
4 divides 16292 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
52, 3, 4sylancr 587 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
61, 5mpbid 232 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
7 zcn 12618 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
8 negcl 11508 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -𝑛 ∈ ℂ)
9 2cn 12341 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
10 picn 26501 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
119, 10mulcli 11268 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
1211a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (2 · π) ∈ ℂ)
138, 12mulcld 11281 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) ∈ ℂ)
1413addlidd 11462 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-𝑛 · (2 · π)))
15 2cnd 12344 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 2 ∈ ℂ)
1610a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → π ∈ ℂ)
178, 15, 16mulassd 11284 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-𝑛 · (2 · π)))
1817eqcomd 2743 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) = ((-𝑛 · 2) · π))
19 id 22 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2019, 15mulneg1d 11716 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · 2) = -(𝑛 · 2))
2120oveq1d 7446 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-(𝑛 · 2) · π))
2214, 18, 213eqtrd 2781 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
237, 22syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2423adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2519, 15mulcld 11281 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (𝑛 · 2) ∈ ℂ)
26 mulneg12 11701 . . . . . . . . . . . . 13 (((𝑛 · 2) ∈ ℂ ∧ π ∈ ℂ) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2725, 16, 26syl2anc 584 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
287, 27syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2928adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
30 oveq1 7438 . . . . . . . . . . 11 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · -π) = (𝐾 · -π))
3130adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · -π) = (𝐾 · -π))
3224, 29, 313eqtrrd 2782 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · -π) = (0 + (-𝑛 · (2 · π))))
3332fveq2d 6910 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
34333adant1 1131 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
35 0cnd 11254 . . . . . . . . 9 (𝑛 ∈ ℤ → 0 ∈ ℂ)
36 znegcl 12652 . . . . . . . . 9 (𝑛 ∈ ℤ → -𝑛 ∈ ℤ)
37 cosper 26524 . . . . . . . . 9 ((0 ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
3835, 36, 37syl2anc 584 . . . . . . . 8 (𝑛 ∈ ℤ → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
39383ad2ant2 1135 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
40 cos0 16186 . . . . . . . . 9 (cos‘0) = 1
41 iftrue 4531 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
4240, 41eqtr4id 2796 . . . . . . . 8 (2 ∥ 𝐾 → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
43423ad2ant1 1134 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
4434, 39, 433eqtrd 2781 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
45443exp 1120 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4645adantl 481 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4746rexlimdv 3153 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
486, 47mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
49 odd2np1 16378 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
5049biimpa 476 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
51 oveq1 7438 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · -π) = (𝐾 · -π))
5251eqcomd 2743 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝐾 → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5352adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5415, 19mulcld 11281 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
55 1cnd 11256 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → 1 ∈ ℂ)
56 negpicn 26504 . . . . . . . . . . . . 13 -π ∈ ℂ
5756a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → -π ∈ ℂ)
5854, 55, 57adddird 11286 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
597, 58syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
6059adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
61 mulneg12 11701 . . . . . . . . . . . . . . . 16 (((2 · 𝑛) ∈ ℂ ∧ π ∈ ℂ) → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6254, 16, 61syl2anc 584 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6362eqcomd 2743 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-(2 · 𝑛) · π))
6415, 19mulneg2d 11717 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = -(2 · 𝑛))
6515, 8mulcomd 11282 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = (-𝑛 · 2))
6664, 65eqtr3d 2779 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -(2 · 𝑛) = (-𝑛 · 2))
6766oveq1d 7446 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((-𝑛 · 2) · π))
6863, 67, 173eqtrd 2781 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-𝑛 · (2 · π)))
6957mullidd 11279 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (1 · -π) = -π)
7068, 69oveq12d 7449 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = ((-𝑛 · (2 · π)) + -π))
7113, 57addcomd 11463 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((-𝑛 · (2 · π)) + -π) = (-π + (-𝑛 · (2 · π))))
7270, 71eqtrd 2777 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
737, 72syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7473adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7553, 60, 743eqtrd 2781 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
76753adant1 1131 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
7776fveq2d 6910 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
78773adant1r 1178 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
79 cosper 26524 . . . . . . 7 ((-π ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
8056, 36, 79sylancr 587 . . . . . 6 (𝑛 ∈ ℤ → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
81803ad2ant2 1135 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
82 cosnegpi 45882 . . . . . . . 8 (cos‘-π) = -1
83 iffalse 4534 . . . . . . . 8 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
8482, 83eqtr4id 2796 . . . . . . 7 (¬ 2 ∥ 𝐾 → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8584adantl 481 . . . . . 6 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
86853ad2ant1 1134 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8778, 81, 863eqtrd 2781 . . . 4 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
8887rexlimdv3a 3159 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
8950, 88mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
9048, 89pm2.61dan 813 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  -cneg 11493  2c2 12321  cz 12613  cosccos 16100  πcpi 16102  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  sqwvfourb  46244
  Copyright terms: Public domain W3C validator