Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosknegpi Structured version   Visualization version   GIF version

Theorem cosknegpi 45898
Description: The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
cosknegpi (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem cosknegpi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 2 ∥ 𝐾)
2 2z 12624 . . . . 5 2 ∈ ℤ
3 simpl 482 . . . . 5 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 𝐾 ∈ ℤ)
4 divides 16274 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
52, 3, 4sylancr 587 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
61, 5mpbid 232 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
7 zcn 12593 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
8 negcl 11482 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -𝑛 ∈ ℂ)
9 2cn 12315 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
10 picn 26419 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
119, 10mulcli 11242 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
1211a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (2 · π) ∈ ℂ)
138, 12mulcld 11255 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) ∈ ℂ)
1413addlidd 11436 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-𝑛 · (2 · π)))
15 2cnd 12318 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 2 ∈ ℂ)
1610a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → π ∈ ℂ)
178, 15, 16mulassd 11258 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-𝑛 · (2 · π)))
1817eqcomd 2741 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) = ((-𝑛 · 2) · π))
19 id 22 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2019, 15mulneg1d 11690 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · 2) = -(𝑛 · 2))
2120oveq1d 7420 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-(𝑛 · 2) · π))
2214, 18, 213eqtrd 2774 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
237, 22syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2423adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2519, 15mulcld 11255 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (𝑛 · 2) ∈ ℂ)
26 mulneg12 11675 . . . . . . . . . . . . 13 (((𝑛 · 2) ∈ ℂ ∧ π ∈ ℂ) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2725, 16, 26syl2anc 584 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
287, 27syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2928adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
30 oveq1 7412 . . . . . . . . . . 11 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · -π) = (𝐾 · -π))
3130adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · -π) = (𝐾 · -π))
3224, 29, 313eqtrrd 2775 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · -π) = (0 + (-𝑛 · (2 · π))))
3332fveq2d 6880 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
34333adant1 1130 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
35 0cnd 11228 . . . . . . . . 9 (𝑛 ∈ ℤ → 0 ∈ ℂ)
36 znegcl 12627 . . . . . . . . 9 (𝑛 ∈ ℤ → -𝑛 ∈ ℤ)
37 cosper 26443 . . . . . . . . 9 ((0 ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
3835, 36, 37syl2anc 584 . . . . . . . 8 (𝑛 ∈ ℤ → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
39383ad2ant2 1134 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
40 cos0 16168 . . . . . . . . 9 (cos‘0) = 1
41 iftrue 4506 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
4240, 41eqtr4id 2789 . . . . . . . 8 (2 ∥ 𝐾 → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
43423ad2ant1 1133 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
4434, 39, 433eqtrd 2774 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
45443exp 1119 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4645adantl 481 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4746rexlimdv 3139 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
486, 47mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
49 odd2np1 16360 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
5049biimpa 476 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
51 oveq1 7412 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · -π) = (𝐾 · -π))
5251eqcomd 2741 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝐾 → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5352adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5415, 19mulcld 11255 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
55 1cnd 11230 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → 1 ∈ ℂ)
56 negpicn 26423 . . . . . . . . . . . . 13 -π ∈ ℂ
5756a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → -π ∈ ℂ)
5854, 55, 57adddird 11260 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
597, 58syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
6059adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
61 mulneg12 11675 . . . . . . . . . . . . . . . 16 (((2 · 𝑛) ∈ ℂ ∧ π ∈ ℂ) → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6254, 16, 61syl2anc 584 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6362eqcomd 2741 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-(2 · 𝑛) · π))
6415, 19mulneg2d 11691 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = -(2 · 𝑛))
6515, 8mulcomd 11256 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = (-𝑛 · 2))
6664, 65eqtr3d 2772 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -(2 · 𝑛) = (-𝑛 · 2))
6766oveq1d 7420 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((-𝑛 · 2) · π))
6863, 67, 173eqtrd 2774 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-𝑛 · (2 · π)))
6957mullidd 11253 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (1 · -π) = -π)
7068, 69oveq12d 7423 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = ((-𝑛 · (2 · π)) + -π))
7113, 57addcomd 11437 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((-𝑛 · (2 · π)) + -π) = (-π + (-𝑛 · (2 · π))))
7270, 71eqtrd 2770 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
737, 72syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7473adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7553, 60, 743eqtrd 2774 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
76753adant1 1130 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
7776fveq2d 6880 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
78773adant1r 1178 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
79 cosper 26443 . . . . . . 7 ((-π ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
8056, 36, 79sylancr 587 . . . . . 6 (𝑛 ∈ ℤ → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
81803ad2ant2 1134 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
82 cosnegpi 45896 . . . . . . . 8 (cos‘-π) = -1
83 iffalse 4509 . . . . . . . 8 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
8482, 83eqtr4id 2789 . . . . . . 7 (¬ 2 ∥ 𝐾 → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8584adantl 481 . . . . . 6 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
86853ad2ant1 1133 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8778, 81, 863eqtrd 2774 . . . 4 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
8887rexlimdv3a 3145 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
8950, 88mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
9048, 89pm2.61dan 812 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  ifcif 4500   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  -cneg 11467  2c2 12295  cz 12588  cosccos 16080  πcpi 16082  cdvds 16272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  sqwvfourb  46258
  Copyright terms: Public domain W3C validator