Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosknegpi Structured version   Visualization version   GIF version

Theorem cosknegpi 45913
Description: The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
cosknegpi (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem cosknegpi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 2 ∥ 𝐾)
2 2z 12504 . . . . 5 2 ∈ ℤ
3 simpl 482 . . . . 5 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 𝐾 ∈ ℤ)
4 divides 16165 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
52, 3, 4sylancr 587 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
61, 5mpbid 232 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
7 zcn 12473 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
8 negcl 11360 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -𝑛 ∈ ℂ)
9 2cn 12200 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
10 picn 26395 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
119, 10mulcli 11119 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
1211a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (2 · π) ∈ ℂ)
138, 12mulcld 11132 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) ∈ ℂ)
1413addlidd 11314 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-𝑛 · (2 · π)))
15 2cnd 12203 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 2 ∈ ℂ)
1610a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → π ∈ ℂ)
178, 15, 16mulassd 11135 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-𝑛 · (2 · π)))
1817eqcomd 2737 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) = ((-𝑛 · 2) · π))
19 id 22 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2019, 15mulneg1d 11570 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · 2) = -(𝑛 · 2))
2120oveq1d 7361 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-(𝑛 · 2) · π))
2214, 18, 213eqtrd 2770 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
237, 22syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2423adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2519, 15mulcld 11132 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (𝑛 · 2) ∈ ℂ)
26 mulneg12 11555 . . . . . . . . . . . . 13 (((𝑛 · 2) ∈ ℂ ∧ π ∈ ℂ) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2725, 16, 26syl2anc 584 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
287, 27syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2928adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
30 oveq1 7353 . . . . . . . . . . 11 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · -π) = (𝐾 · -π))
3130adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · -π) = (𝐾 · -π))
3224, 29, 313eqtrrd 2771 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · -π) = (0 + (-𝑛 · (2 · π))))
3332fveq2d 6826 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
34333adant1 1130 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
35 0cnd 11105 . . . . . . . . 9 (𝑛 ∈ ℤ → 0 ∈ ℂ)
36 znegcl 12507 . . . . . . . . 9 (𝑛 ∈ ℤ → -𝑛 ∈ ℤ)
37 cosper 26419 . . . . . . . . 9 ((0 ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
3835, 36, 37syl2anc 584 . . . . . . . 8 (𝑛 ∈ ℤ → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
39383ad2ant2 1134 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
40 cos0 16059 . . . . . . . . 9 (cos‘0) = 1
41 iftrue 4481 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
4240, 41eqtr4id 2785 . . . . . . . 8 (2 ∥ 𝐾 → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
43423ad2ant1 1133 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
4434, 39, 433eqtrd 2770 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
45443exp 1119 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4645adantl 481 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4746rexlimdv 3131 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
486, 47mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
49 odd2np1 16252 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
5049biimpa 476 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
51 oveq1 7353 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · -π) = (𝐾 · -π))
5251eqcomd 2737 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝐾 → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5352adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5415, 19mulcld 11132 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
55 1cnd 11107 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → 1 ∈ ℂ)
56 negpicn 26399 . . . . . . . . . . . . 13 -π ∈ ℂ
5756a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → -π ∈ ℂ)
5854, 55, 57adddird 11137 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
597, 58syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
6059adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
61 mulneg12 11555 . . . . . . . . . . . . . . . 16 (((2 · 𝑛) ∈ ℂ ∧ π ∈ ℂ) → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6254, 16, 61syl2anc 584 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6362eqcomd 2737 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-(2 · 𝑛) · π))
6415, 19mulneg2d 11571 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = -(2 · 𝑛))
6515, 8mulcomd 11133 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = (-𝑛 · 2))
6664, 65eqtr3d 2768 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -(2 · 𝑛) = (-𝑛 · 2))
6766oveq1d 7361 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((-𝑛 · 2) · π))
6863, 67, 173eqtrd 2770 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-𝑛 · (2 · π)))
6957mullidd 11130 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (1 · -π) = -π)
7068, 69oveq12d 7364 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = ((-𝑛 · (2 · π)) + -π))
7113, 57addcomd 11315 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((-𝑛 · (2 · π)) + -π) = (-π + (-𝑛 · (2 · π))))
7270, 71eqtrd 2766 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
737, 72syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7473adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7553, 60, 743eqtrd 2770 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
76753adant1 1130 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
7776fveq2d 6826 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
78773adant1r 1178 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
79 cosper 26419 . . . . . . 7 ((-π ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
8056, 36, 79sylancr 587 . . . . . 6 (𝑛 ∈ ℤ → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
81803ad2ant2 1134 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
82 cosnegpi 45911 . . . . . . . 8 (cos‘-π) = -1
83 iffalse 4484 . . . . . . . 8 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
8482, 83eqtr4id 2785 . . . . . . 7 (¬ 2 ∥ 𝐾 → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8584adantl 481 . . . . . 6 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
86853ad2ant1 1133 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8778, 81, 863eqtrd 2770 . . . 4 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
8887rexlimdv3a 3137 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
8950, 88mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
9048, 89pm2.61dan 812 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  ifcif 4475   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  -cneg 11345  2c2 12180  cz 12468  cosccos 15971  πcpi 15973  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796
This theorem is referenced by:  sqwvfourb  46273
  Copyright terms: Public domain W3C validator