Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosknegpi Structured version   Visualization version   GIF version

Theorem cosknegpi 45867
Description: The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
cosknegpi (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem cosknegpi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 2 ∥ 𝐾)
2 2z 12565 . . . . 5 2 ∈ ℤ
3 simpl 482 . . . . 5 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 𝐾 ∈ ℤ)
4 divides 16224 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
52, 3, 4sylancr 587 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
61, 5mpbid 232 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
7 zcn 12534 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
8 negcl 11421 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -𝑛 ∈ ℂ)
9 2cn 12261 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
10 picn 26367 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
119, 10mulcli 11181 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
1211a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (2 · π) ∈ ℂ)
138, 12mulcld 11194 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) ∈ ℂ)
1413addlidd 11375 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-𝑛 · (2 · π)))
15 2cnd 12264 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 2 ∈ ℂ)
1610a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → π ∈ ℂ)
178, 15, 16mulassd 11197 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-𝑛 · (2 · π)))
1817eqcomd 2735 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) = ((-𝑛 · 2) · π))
19 id 22 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2019, 15mulneg1d 11631 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · 2) = -(𝑛 · 2))
2120oveq1d 7402 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-(𝑛 · 2) · π))
2214, 18, 213eqtrd 2768 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
237, 22syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2423adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2519, 15mulcld 11194 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (𝑛 · 2) ∈ ℂ)
26 mulneg12 11616 . . . . . . . . . . . . 13 (((𝑛 · 2) ∈ ℂ ∧ π ∈ ℂ) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2725, 16, 26syl2anc 584 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
287, 27syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2928adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
30 oveq1 7394 . . . . . . . . . . 11 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · -π) = (𝐾 · -π))
3130adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · -π) = (𝐾 · -π))
3224, 29, 313eqtrrd 2769 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · -π) = (0 + (-𝑛 · (2 · π))))
3332fveq2d 6862 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
34333adant1 1130 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
35 0cnd 11167 . . . . . . . . 9 (𝑛 ∈ ℤ → 0 ∈ ℂ)
36 znegcl 12568 . . . . . . . . 9 (𝑛 ∈ ℤ → -𝑛 ∈ ℤ)
37 cosper 26391 . . . . . . . . 9 ((0 ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
3835, 36, 37syl2anc 584 . . . . . . . 8 (𝑛 ∈ ℤ → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
39383ad2ant2 1134 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
40 cos0 16118 . . . . . . . . 9 (cos‘0) = 1
41 iftrue 4494 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
4240, 41eqtr4id 2783 . . . . . . . 8 (2 ∥ 𝐾 → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
43423ad2ant1 1133 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
4434, 39, 433eqtrd 2768 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
45443exp 1119 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4645adantl 481 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4746rexlimdv 3132 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
486, 47mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
49 odd2np1 16311 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
5049biimpa 476 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
51 oveq1 7394 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · -π) = (𝐾 · -π))
5251eqcomd 2735 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝐾 → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5352adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5415, 19mulcld 11194 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
55 1cnd 11169 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → 1 ∈ ℂ)
56 negpicn 26371 . . . . . . . . . . . . 13 -π ∈ ℂ
5756a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → -π ∈ ℂ)
5854, 55, 57adddird 11199 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
597, 58syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
6059adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
61 mulneg12 11616 . . . . . . . . . . . . . . . 16 (((2 · 𝑛) ∈ ℂ ∧ π ∈ ℂ) → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6254, 16, 61syl2anc 584 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6362eqcomd 2735 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-(2 · 𝑛) · π))
6415, 19mulneg2d 11632 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = -(2 · 𝑛))
6515, 8mulcomd 11195 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = (-𝑛 · 2))
6664, 65eqtr3d 2766 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -(2 · 𝑛) = (-𝑛 · 2))
6766oveq1d 7402 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((-𝑛 · 2) · π))
6863, 67, 173eqtrd 2768 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-𝑛 · (2 · π)))
6957mullidd 11192 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (1 · -π) = -π)
7068, 69oveq12d 7405 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = ((-𝑛 · (2 · π)) + -π))
7113, 57addcomd 11376 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((-𝑛 · (2 · π)) + -π) = (-π + (-𝑛 · (2 · π))))
7270, 71eqtrd 2764 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
737, 72syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7473adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7553, 60, 743eqtrd 2768 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
76753adant1 1130 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
7776fveq2d 6862 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
78773adant1r 1178 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
79 cosper 26391 . . . . . . 7 ((-π ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
8056, 36, 79sylancr 587 . . . . . 6 (𝑛 ∈ ℤ → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
81803ad2ant2 1134 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
82 cosnegpi 45865 . . . . . . . 8 (cos‘-π) = -1
83 iffalse 4497 . . . . . . . 8 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
8482, 83eqtr4id 2783 . . . . . . 7 (¬ 2 ∥ 𝐾 → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8584adantl 481 . . . . . 6 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
86853ad2ant1 1133 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8778, 81, 863eqtrd 2768 . . . 4 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
8887rexlimdv3a 3138 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
8950, 88mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
9048, 89pm2.61dan 812 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  ifcif 4488   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  -cneg 11406  2c2 12241  cz 12529  cosccos 16030  πcpi 16032  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  sqwvfourb  46227
  Copyright terms: Public domain W3C validator