Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsexpim | Structured version Visualization version GIF version |
Description: dvdssqim 16192 generalized to nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.) |
Ref | Expression |
---|---|
dvdsexpim | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divides 15893 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵)) | |
2 | 1 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵)) |
3 | zexpcl 13725 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑘↑𝑁) ∈ ℤ) | |
4 | 3 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (𝑘↑𝑁) ∈ ℤ) |
5 | 4 | adantll 710 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝑘↑𝑁) ∈ ℤ) |
6 | zexpcl 13725 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∈ ℤ) |
8 | dvdsmul2 15916 | . . . . . . 7 ⊢ (((𝑘↑𝑁) ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘↑𝑁) · (𝐴↑𝑁))) | |
9 | 5, 7, 8 | syl2anc 583 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘↑𝑁) · (𝐴↑𝑁))) |
10 | zcn 12254 | . . . . . . . 8 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
12 | zcn 12254 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
13 | 12 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝐴 ∈ ℂ) |
14 | simplr 765 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ0) | |
15 | 11, 13, 14 | mulexpd 13807 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴)↑𝑁) = ((𝑘↑𝑁) · (𝐴↑𝑁))) |
16 | 9, 15 | breqtrrd 5098 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘 · 𝐴)↑𝑁)) |
17 | oveq1 7262 | . . . . . 6 ⊢ ((𝑘 · 𝐴) = 𝐵 → ((𝑘 · 𝐴)↑𝑁) = (𝐵↑𝑁)) | |
18 | 17 | breq2d 5082 | . . . . 5 ⊢ ((𝑘 · 𝐴) = 𝐵 → ((𝐴↑𝑁) ∥ ((𝑘 · 𝐴)↑𝑁) ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
19 | 16, 18 | syl5ibcom 244 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
20 | 19 | rexlimdva 3212 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
21 | 20 | 3adant2 1129 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
22 | 2, 21 | sylbid 239 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 (class class class)co 7255 ℂcc 10800 · cmul 10807 ℕ0cn0 12163 ℤcz 12249 ↑cexp 13710 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 df-dvds 15892 |
This theorem is referenced by: dvdsexpad 40253 expgcd 40255 dvdsexpnn 40261 fltaccoprm 40393 |
Copyright terms: Public domain | W3C validator |