MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsexpim Structured version   Visualization version   GIF version

Theorem dvdsexpim 16501
Description: If two numbers are divisible, so are their nonnegative exponents. Similar to dvdssqim 16500 for nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.)
Assertion
Ref Expression
dvdsexpim ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))

Proof of Theorem dvdsexpim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 divides 16200 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵))
213adant3 1132 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵))
3 zexpcl 14017 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑘𝑁) ∈ ℤ)
43ancoms 458 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑘𝑁) ∈ ℤ)
54adantll 714 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝑘𝑁) ∈ ℤ)
6 zexpcl 14017 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
76adantr 480 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴𝑁) ∈ ℤ)
8 dvdsmul2 16224 . . . . . . 7 (((𝑘𝑁) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (𝐴𝑁) ∥ ((𝑘𝑁) · (𝐴𝑁)))
95, 7, 8syl2anc 584 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴𝑁) ∥ ((𝑘𝑁) · (𝐴𝑁)))
10 zcn 12510 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
1110adantl 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
12 zcn 12510 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1312ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝐴 ∈ ℂ)
14 simplr 768 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ0)
1511, 13, 14mulexpd 14102 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴)↑𝑁) = ((𝑘𝑁) · (𝐴𝑁)))
169, 15breqtrrd 5130 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴𝑁) ∥ ((𝑘 · 𝐴)↑𝑁))
17 oveq1 7376 . . . . . 6 ((𝑘 · 𝐴) = 𝐵 → ((𝑘 · 𝐴)↑𝑁) = (𝐵𝑁))
1817breq2d 5114 . . . . 5 ((𝑘 · 𝐴) = 𝐵 → ((𝐴𝑁) ∥ ((𝑘 · 𝐴)↑𝑁) ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
1916, 18syl5ibcom 245 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴) = 𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
2019rexlimdva 3134 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
21203adant2 1131 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
222, 21sylbid 240 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  (class class class)co 7369  cc 11042   · cmul 11049  0cn0 12418  cz 12505  cexp 14002  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-exp 14003  df-dvds 16199
This theorem is referenced by:  expgcd  16509  dvdsexpad  42313  dvdsexpnn  42314  fltaccoprm  42621
  Copyright terms: Public domain W3C validator