MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsexpim Structured version   Visualization version   GIF version

Theorem dvdsexpim 16472
Description: If two numbers are divisible, so are their nonnegative exponents. Similar to dvdssqim 16471 for nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.)
Assertion
Ref Expression
dvdsexpim ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))

Proof of Theorem dvdsexpim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 divides 16171 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵))
213adant3 1132 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵))
3 zexpcl 13989 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑘𝑁) ∈ ℤ)
43ancoms 458 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑘𝑁) ∈ ℤ)
54adantll 714 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝑘𝑁) ∈ ℤ)
6 zexpcl 13989 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
76adantr 480 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴𝑁) ∈ ℤ)
8 dvdsmul2 16195 . . . . . . 7 (((𝑘𝑁) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (𝐴𝑁) ∥ ((𝑘𝑁) · (𝐴𝑁)))
95, 7, 8syl2anc 584 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴𝑁) ∥ ((𝑘𝑁) · (𝐴𝑁)))
10 zcn 12479 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
1110adantl 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
12 zcn 12479 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1312ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝐴 ∈ ℂ)
14 simplr 768 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ0)
1511, 13, 14mulexpd 14074 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴)↑𝑁) = ((𝑘𝑁) · (𝐴𝑁)))
169, 15breqtrrd 5121 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴𝑁) ∥ ((𝑘 · 𝐴)↑𝑁))
17 oveq1 7359 . . . . . 6 ((𝑘 · 𝐴) = 𝐵 → ((𝑘 · 𝐴)↑𝑁) = (𝐵𝑁))
1817breq2d 5105 . . . . 5 ((𝑘 · 𝐴) = 𝐵 → ((𝐴𝑁) ∥ ((𝑘 · 𝐴)↑𝑁) ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
1916, 18syl5ibcom 245 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴) = 𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
2019rexlimdva 3133 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
21203adant2 1131 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
222, 21sylbid 240 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5093  (class class class)co 7352  cc 11010   · cmul 11017  0cn0 12387  cz 12474  cexp 13974  cdvds 16169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-seq 13915  df-exp 13975  df-dvds 16170
This theorem is referenced by:  expgcd  16480  dvdsexpad  42431  dvdsexpnn  42432  fltaccoprm  42739
  Copyright terms: Public domain W3C validator