![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsexpim | Structured version Visualization version GIF version |
Description: If two numbers are divisible, so are their nonnegative exponents. Similar to dvdssqim 16587 for nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.) |
Ref | Expression |
---|---|
dvdsexpim | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divides 16288 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵)) | |
2 | 1 | 3adant3 1131 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵)) |
3 | zexpcl 14113 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑘↑𝑁) ∈ ℤ) | |
4 | 3 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (𝑘↑𝑁) ∈ ℤ) |
5 | 4 | adantll 714 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝑘↑𝑁) ∈ ℤ) |
6 | zexpcl 14113 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∈ ℤ) |
8 | dvdsmul2 16312 | . . . . . . 7 ⊢ (((𝑘↑𝑁) ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘↑𝑁) · (𝐴↑𝑁))) | |
9 | 5, 7, 8 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘↑𝑁) · (𝐴↑𝑁))) |
10 | zcn 12615 | . . . . . . . 8 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
12 | zcn 12615 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
13 | 12 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝐴 ∈ ℂ) |
14 | simplr 769 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ0) | |
15 | 11, 13, 14 | mulexpd 14197 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴)↑𝑁) = ((𝑘↑𝑁) · (𝐴↑𝑁))) |
16 | 9, 15 | breqtrrd 5175 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘 · 𝐴)↑𝑁)) |
17 | oveq1 7437 | . . . . . 6 ⊢ ((𝑘 · 𝐴) = 𝐵 → ((𝑘 · 𝐴)↑𝑁) = (𝐵↑𝑁)) | |
18 | 17 | breq2d 5159 | . . . . 5 ⊢ ((𝑘 · 𝐴) = 𝐵 → ((𝐴↑𝑁) ∥ ((𝑘 · 𝐴)↑𝑁) ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
19 | 16, 18 | syl5ibcom 245 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
20 | 19 | rexlimdva 3152 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
21 | 20 | 3adant2 1130 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
22 | 2, 21 | sylbid 240 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 class class class wbr 5147 (class class class)co 7430 ℂcc 11150 · cmul 11157 ℕ0cn0 12523 ℤcz 12610 ↑cexp 14098 ∥ cdvds 16286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-seq 14039 df-exp 14099 df-dvds 16287 |
This theorem is referenced by: expgcd 16596 dvdsexpad 42345 dvdsexpnn 42346 fltaccoprm 42626 |
Copyright terms: Public domain | W3C validator |