Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsexpim Structured version   Visualization version   GIF version

Theorem dvdsexpim 39174
Description: dvdssqim 15898 generalized to nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.)
Assertion
Ref Expression
dvdsexpim ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))

Proof of Theorem dvdsexpim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 divides 15603 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵))
213adant3 1128 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵))
3 zexpcl 13438 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑘𝑁) ∈ ℤ)
43ancoms 461 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑘𝑁) ∈ ℤ)
54adantll 712 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝑘𝑁) ∈ ℤ)
6 zexpcl 13438 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
76adantr 483 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴𝑁) ∈ ℤ)
8 dvdsmul2 15626 . . . . . . 7 (((𝑘𝑁) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (𝐴𝑁) ∥ ((𝑘𝑁) · (𝐴𝑁)))
95, 7, 8syl2anc 586 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴𝑁) ∥ ((𝑘𝑁) · (𝐴𝑁)))
10 zcn 11980 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
1110adantl 484 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
12 zcn 11980 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1312ad2antrr 724 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝐴 ∈ ℂ)
14 simplr 767 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ0)
1511, 13, 14mulexpd 13519 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴)↑𝑁) = ((𝑘𝑁) · (𝐴𝑁)))
169, 15breqtrrd 5086 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴𝑁) ∥ ((𝑘 · 𝐴)↑𝑁))
17 oveq1 7157 . . . . . 6 ((𝑘 · 𝐴) = 𝐵 → ((𝑘 · 𝐴)↑𝑁) = (𝐵𝑁))
1817breq2d 5070 . . . . 5 ((𝑘 · 𝐴) = 𝐵 → ((𝐴𝑁) ∥ ((𝑘 · 𝐴)↑𝑁) ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
1916, 18syl5ibcom 247 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴) = 𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
2019rexlimdva 3284 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
21203adant2 1127 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
222, 21sylbid 242 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139   class class class wbr 5058  (class class class)co 7150  cc 10529   · cmul 10536  0cn0 11891  cz 11975  cexp 13423  cdvds 15601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13364  df-exp 13424  df-dvds 15602
This theorem is referenced by:  expgcd  39176
  Copyright terms: Public domain W3C validator