| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsexpim | Structured version Visualization version GIF version | ||
| Description: If two numbers are divisible, so are their nonnegative exponents. Similar to dvdssqim 16531 for nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.) |
| Ref | Expression |
|---|---|
| dvdsexpim | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 16231 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵)) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵)) |
| 3 | zexpcl 14048 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑘↑𝑁) ∈ ℤ) | |
| 4 | 3 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (𝑘↑𝑁) ∈ ℤ) |
| 5 | 4 | adantll 714 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝑘↑𝑁) ∈ ℤ) |
| 6 | zexpcl 14048 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∈ ℤ) |
| 8 | dvdsmul2 16255 | . . . . . . 7 ⊢ (((𝑘↑𝑁) ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘↑𝑁) · (𝐴↑𝑁))) | |
| 9 | 5, 7, 8 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘↑𝑁) · (𝐴↑𝑁))) |
| 10 | zcn 12541 | . . . . . . . 8 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
| 11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
| 12 | zcn 12541 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 13 | 12 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 14 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ0) | |
| 15 | 11, 13, 14 | mulexpd 14133 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴)↑𝑁) = ((𝑘↑𝑁) · (𝐴↑𝑁))) |
| 16 | 9, 15 | breqtrrd 5138 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘 · 𝐴)↑𝑁)) |
| 17 | oveq1 7397 | . . . . . 6 ⊢ ((𝑘 · 𝐴) = 𝐵 → ((𝑘 · 𝐴)↑𝑁) = (𝐵↑𝑁)) | |
| 18 | 17 | breq2d 5122 | . . . . 5 ⊢ ((𝑘 · 𝐴) = 𝐵 → ((𝐴↑𝑁) ∥ ((𝑘 · 𝐴)↑𝑁) ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 19 | 16, 18 | syl5ibcom 245 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 20 | 19 | rexlimdva 3135 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 21 | 20 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 22 | 2, 21 | sylbid 240 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 (class class class)co 7390 ℂcc 11073 · cmul 11080 ℕ0cn0 12449 ℤcz 12536 ↑cexp 14033 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 df-dvds 16230 |
| This theorem is referenced by: expgcd 16540 dvdsexpad 42327 dvdsexpnn 42328 fltaccoprm 42635 |
| Copyright terms: Public domain | W3C validator |