| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsexpim | Structured version Visualization version GIF version | ||
| Description: If two numbers are divisible, so are their nonnegative exponents. Similar to dvdssqim 16502 for nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.) |
| Ref | Expression |
|---|---|
| dvdsexpim | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 16202 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵)) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵)) |
| 3 | zexpcl 14020 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑘↑𝑁) ∈ ℤ) | |
| 4 | 3 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (𝑘↑𝑁) ∈ ℤ) |
| 5 | 4 | adantll 714 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝑘↑𝑁) ∈ ℤ) |
| 6 | zexpcl 14020 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∈ ℤ) |
| 8 | dvdsmul2 16226 | . . . . . . 7 ⊢ (((𝑘↑𝑁) ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘↑𝑁) · (𝐴↑𝑁))) | |
| 9 | 5, 7, 8 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘↑𝑁) · (𝐴↑𝑁))) |
| 10 | zcn 12513 | . . . . . . . 8 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
| 11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
| 12 | zcn 12513 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 13 | 12 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 14 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ0) | |
| 15 | 11, 13, 14 | mulexpd 14105 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴)↑𝑁) = ((𝑘↑𝑁) · (𝐴↑𝑁))) |
| 16 | 9, 15 | breqtrrd 5130 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑁) ∥ ((𝑘 · 𝐴)↑𝑁)) |
| 17 | oveq1 7377 | . . . . . 6 ⊢ ((𝑘 · 𝐴) = 𝐵 → ((𝑘 · 𝐴)↑𝑁) = (𝐵↑𝑁)) | |
| 18 | 17 | breq2d 5114 | . . . . 5 ⊢ ((𝑘 · 𝐴) = 𝐵 → ((𝐴↑𝑁) ∥ ((𝑘 · 𝐴)↑𝑁) ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 19 | 16, 18 | syl5ibcom 245 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 20 | 19 | rexlimdva 3134 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 21 | 20 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| 22 | 2, 21 | sylbid 240 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5102 (class class class)co 7370 ℂcc 11045 · cmul 11052 ℕ0cn0 12421 ℤcz 12508 ↑cexp 14005 ∥ cdvds 16200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-n0 12422 df-z 12509 df-uz 12773 df-seq 13946 df-exp 14006 df-dvds 16201 |
| This theorem is referenced by: expgcd 16511 dvdsexpad 42315 dvdsexpnn 42316 fltaccoprm 42623 |
| Copyright terms: Public domain | W3C validator |