| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsexp2im | Structured version Visualization version GIF version | ||
| Description: If an integer divides another integer, then it also divides any of its powers. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| dvdsexp2im | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 16224 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀)) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀)) |
| 3 | simpl1 1192 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℤ) | |
| 4 | nnnn0 12449 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 5 | 4 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ0) |
| 7 | zexpcl 14041 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐾↑𝑁) ∈ ℤ) | |
| 8 | 3, 6, 7 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾↑𝑁) ∈ ℤ) |
| 9 | simpr 484 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
| 10 | zexpcl 14041 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑚↑𝑁) ∈ ℤ) | |
| 11 | 9, 6, 10 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝑚↑𝑁) ∈ ℤ) |
| 12 | 11, 8 | zmulcld 12644 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚↑𝑁) · (𝐾↑𝑁)) ∈ ℤ) |
| 13 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ) | |
| 14 | iddvdsexp 16249 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∥ (𝐾↑𝑁)) | |
| 15 | 3, 13, 14 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ (𝐾↑𝑁)) |
| 16 | dvdsmul2 16248 | . . . . . . 7 ⊢ (((𝑚↑𝑁) ∈ ℤ ∧ (𝐾↑𝑁) ∈ ℤ) → (𝐾↑𝑁) ∥ ((𝑚↑𝑁) · (𝐾↑𝑁))) | |
| 17 | 11, 8, 16 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾↑𝑁) ∥ ((𝑚↑𝑁) · (𝐾↑𝑁))) |
| 18 | 3, 8, 12, 15, 17 | dvdstrd 16265 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚↑𝑁) · (𝐾↑𝑁))) |
| 19 | zcn 12534 | . . . . . . 7 ⊢ (𝑚 ∈ ℤ → 𝑚 ∈ ℂ) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ) |
| 21 | zcn 12534 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 22 | 21 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℂ) |
| 24 | 20, 23, 6 | mulexpd 14126 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾)↑𝑁) = ((𝑚↑𝑁) · (𝐾↑𝑁))) |
| 25 | 18, 24 | breqtrrd 5135 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚 · 𝐾)↑𝑁)) |
| 26 | oveq1 7394 | . . . . 5 ⊢ ((𝑚 · 𝐾) = 𝑀 → ((𝑚 · 𝐾)↑𝑁) = (𝑀↑𝑁)) | |
| 27 | 26 | breq2d 5119 | . . . 4 ⊢ ((𝑚 · 𝐾) = 𝑀 → (𝐾 ∥ ((𝑚 · 𝐾)↑𝑁) ↔ 𝐾 ∥ (𝑀↑𝑁))) |
| 28 | 25, 27 | syl5ibcom 245 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾) = 𝑀 → 𝐾 ∥ (𝑀↑𝑁))) |
| 29 | 28 | rexlimdva 3134 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀 → 𝐾 ∥ (𝑀↑𝑁))) |
| 30 | 2, 29 | sylbid 240 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5107 (class class class)co 7387 ℂcc 11066 · cmul 11073 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 ↑cexp 14026 ∥ cdvds 16222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 df-dvds 16223 |
| This theorem is referenced by: flt4lem5 42638 flt4lem7 42647 nna4b4nsq 42648 |
| Copyright terms: Public domain | W3C validator |