| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsexp2im | Structured version Visualization version GIF version | ||
| Description: If an integer divides another integer, then it also divides any of its powers. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| dvdsexp2im | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 16157 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀)) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀)) |
| 3 | simpl1 1192 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℤ) | |
| 4 | nnnn0 12380 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 5 | 4 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ0) |
| 7 | zexpcl 13975 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐾↑𝑁) ∈ ℤ) | |
| 8 | 3, 6, 7 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾↑𝑁) ∈ ℤ) |
| 9 | simpr 484 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
| 10 | zexpcl 13975 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑚↑𝑁) ∈ ℤ) | |
| 11 | 9, 6, 10 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝑚↑𝑁) ∈ ℤ) |
| 12 | 11, 8 | zmulcld 12575 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚↑𝑁) · (𝐾↑𝑁)) ∈ ℤ) |
| 13 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ) | |
| 14 | iddvdsexp 16182 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∥ (𝐾↑𝑁)) | |
| 15 | 3, 13, 14 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ (𝐾↑𝑁)) |
| 16 | dvdsmul2 16181 | . . . . . . 7 ⊢ (((𝑚↑𝑁) ∈ ℤ ∧ (𝐾↑𝑁) ∈ ℤ) → (𝐾↑𝑁) ∥ ((𝑚↑𝑁) · (𝐾↑𝑁))) | |
| 17 | 11, 8, 16 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾↑𝑁) ∥ ((𝑚↑𝑁) · (𝐾↑𝑁))) |
| 18 | 3, 8, 12, 15, 17 | dvdstrd 16198 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚↑𝑁) · (𝐾↑𝑁))) |
| 19 | zcn 12465 | . . . . . . 7 ⊢ (𝑚 ∈ ℤ → 𝑚 ∈ ℂ) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ) |
| 21 | zcn 12465 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 22 | 21 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℂ) |
| 24 | 20, 23, 6 | mulexpd 14060 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾)↑𝑁) = ((𝑚↑𝑁) · (𝐾↑𝑁))) |
| 25 | 18, 24 | breqtrrd 5117 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚 · 𝐾)↑𝑁)) |
| 26 | oveq1 7348 | . . . . 5 ⊢ ((𝑚 · 𝐾) = 𝑀 → ((𝑚 · 𝐾)↑𝑁) = (𝑀↑𝑁)) | |
| 27 | 26 | breq2d 5101 | . . . 4 ⊢ ((𝑚 · 𝐾) = 𝑀 → (𝐾 ∥ ((𝑚 · 𝐾)↑𝑁) ↔ 𝐾 ∥ (𝑀↑𝑁))) |
| 28 | 25, 27 | syl5ibcom 245 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾) = 𝑀 → 𝐾 ∥ (𝑀↑𝑁))) |
| 29 | 28 | rexlimdva 3131 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀 → 𝐾 ∥ (𝑀↑𝑁))) |
| 30 | 2, 29 | sylbid 240 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 class class class wbr 5089 (class class class)co 7341 ℂcc 10996 · cmul 11003 ℕcn 12117 ℕ0cn0 12373 ℤcz 12460 ↑cexp 13960 ∥ cdvds 16155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-seq 13901 df-exp 13961 df-dvds 16156 |
| This theorem is referenced by: flt4lem5 42662 flt4lem7 42671 nna4b4nsq 42672 |
| Copyright terms: Public domain | W3C validator |