MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsexp2im Structured version   Visualization version   GIF version

Theorem dvdsexp2im 15772
Description: If an integer divides another integer, then it also divides any of its powers. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdsexp2im ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑀𝐾 ∥ (𝑀𝑁)))

Proof of Theorem dvdsexp2im
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 divides 15701 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀))
213adant3 1133 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀))
3 simpl1 1192 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℤ)
4 nnnn0 11983 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
543ad2ant3 1136 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
65adantr 484 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ0)
7 zexpcl 13536 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐾𝑁) ∈ ℤ)
83, 6, 7syl2anc 587 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾𝑁) ∈ ℤ)
9 simpr 488 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
10 zexpcl 13536 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑚𝑁) ∈ ℤ)
119, 6, 10syl2anc 587 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝑚𝑁) ∈ ℤ)
1211, 8zmulcld 12174 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚𝑁) · (𝐾𝑁)) ∈ ℤ)
13 simpl3 1194 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
14 iddvdsexp 15725 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∥ (𝐾𝑁))
153, 13, 14syl2anc 587 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ (𝐾𝑁))
16 dvdsmul2 15724 . . . . . . 7 (((𝑚𝑁) ∈ ℤ ∧ (𝐾𝑁) ∈ ℤ) → (𝐾𝑁) ∥ ((𝑚𝑁) · (𝐾𝑁)))
1711, 8, 16syl2anc 587 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾𝑁) ∥ ((𝑚𝑁) · (𝐾𝑁)))
183, 8, 12, 15, 17dvdstrd 15740 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚𝑁) · (𝐾𝑁)))
19 zcn 12067 . . . . . . 7 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
2019adantl 485 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
21 zcn 12067 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
22213ad2ant1 1134 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
2322adantr 484 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℂ)
2420, 23, 6mulexpd 13617 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾)↑𝑁) = ((𝑚𝑁) · (𝐾𝑁)))
2518, 24breqtrrd 5058 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚 · 𝐾)↑𝑁))
26 oveq1 7177 . . . . 5 ((𝑚 · 𝐾) = 𝑀 → ((𝑚 · 𝐾)↑𝑁) = (𝑀𝑁))
2726breq2d 5042 . . . 4 ((𝑚 · 𝐾) = 𝑀 → (𝐾 ∥ ((𝑚 · 𝐾)↑𝑁) ↔ 𝐾 ∥ (𝑀𝑁)))
2825, 27syl5ibcom 248 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾) = 𝑀𝐾 ∥ (𝑀𝑁)))
2928rexlimdva 3194 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀𝐾 ∥ (𝑀𝑁)))
302, 29sylbid 243 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑀𝐾 ∥ (𝑀𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wrex 3054   class class class wbr 5030  (class class class)co 7170  cc 10613   · cmul 10620  cn 11716  0cn0 11976  cz 12062  cexp 13521  cdvds 15699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-seq 13461  df-exp 13522  df-dvds 15700
This theorem is referenced by:  flt4lem5  40059  flt4lem7  40068  nna4b4nsq  40069
  Copyright terms: Public domain W3C validator