MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsexp2im Structured version   Visualization version   GIF version

Theorem dvdsexp2im 16036
Description: If an integer divides another integer, then it also divides any of its powers. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdsexp2im ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑀𝐾 ∥ (𝑀𝑁)))

Proof of Theorem dvdsexp2im
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 divides 15965 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀))
213adant3 1131 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑀 ↔ ∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀))
3 simpl1 1190 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℤ)
4 nnnn0 12240 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
543ad2ant3 1134 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
65adantr 481 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ0)
7 zexpcl 13797 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐾𝑁) ∈ ℤ)
83, 6, 7syl2anc 584 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾𝑁) ∈ ℤ)
9 simpr 485 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
10 zexpcl 13797 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑚𝑁) ∈ ℤ)
119, 6, 10syl2anc 584 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝑚𝑁) ∈ ℤ)
1211, 8zmulcld 12432 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚𝑁) · (𝐾𝑁)) ∈ ℤ)
13 simpl3 1192 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
14 iddvdsexp 15989 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∥ (𝐾𝑁))
153, 13, 14syl2anc 584 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ (𝐾𝑁))
16 dvdsmul2 15988 . . . . . . 7 (((𝑚𝑁) ∈ ℤ ∧ (𝐾𝑁) ∈ ℤ) → (𝐾𝑁) ∥ ((𝑚𝑁) · (𝐾𝑁)))
1711, 8, 16syl2anc 584 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → (𝐾𝑁) ∥ ((𝑚𝑁) · (𝐾𝑁)))
183, 8, 12, 15, 17dvdstrd 16004 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚𝑁) · (𝐾𝑁)))
19 zcn 12324 . . . . . . 7 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
2019adantl 482 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
21 zcn 12324 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
22213ad2ant1 1132 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
2322adantr 481 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∈ ℂ)
2420, 23, 6mulexpd 13879 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾)↑𝑁) = ((𝑚𝑁) · (𝐾𝑁)))
2518, 24breqtrrd 5102 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → 𝐾 ∥ ((𝑚 · 𝐾)↑𝑁))
26 oveq1 7282 . . . . 5 ((𝑚 · 𝐾) = 𝑀 → ((𝑚 · 𝐾)↑𝑁) = (𝑀𝑁))
2726breq2d 5086 . . . 4 ((𝑚 · 𝐾) = 𝑀 → (𝐾 ∥ ((𝑚 · 𝐾)↑𝑁) ↔ 𝐾 ∥ (𝑀𝑁)))
2825, 27syl5ibcom 244 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑚 ∈ ℤ) → ((𝑚 · 𝐾) = 𝑀𝐾 ∥ (𝑀𝑁)))
2928rexlimdva 3213 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∃𝑚 ∈ ℤ (𝑚 · 𝐾) = 𝑀𝐾 ∥ (𝑀𝑁)))
302, 29sylbid 239 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑀𝐾 ∥ (𝑀𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  (class class class)co 7275  cc 10869   · cmul 10876  cn 11973  0cn0 12233  cz 12319  cexp 13782  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783  df-dvds 15964
This theorem is referenced by:  flt4lem5  40487  flt4lem7  40496  nna4b4nsq  40497
  Copyright terms: Public domain W3C validator