![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divalglem4 | Structured version Visualization version GIF version |
Description: Lemma for divalg 16437. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
divalglem1.3 | ⊢ 𝐷 ≠ 0 |
divalglem2.4 | ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} |
Ref | Expression |
---|---|
divalglem4 | ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem0.2 | . . . . . 6 ⊢ 𝐷 ∈ ℤ | |
2 | divalglem0.1 | . . . . . . 7 ⊢ 𝑁 ∈ ℤ | |
3 | nn0z 12636 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ0 → 𝑧 ∈ ℤ) | |
4 | zsubcl 12657 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 − 𝑧) ∈ ℤ) | |
5 | 2, 3, 4 | sylancr 587 | . . . . . 6 ⊢ (𝑧 ∈ ℕ0 → (𝑁 − 𝑧) ∈ ℤ) |
6 | divides 16289 | . . . . . 6 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑧) ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) | |
7 | 1, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) |
8 | nn0cn 12534 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ) | |
9 | zmulcl 12664 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ) | |
10 | 1, 9 | mpan2 691 | . . . . . . . . 9 ⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℤ) |
11 | 10 | zcnd 12721 | . . . . . . . 8 ⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℂ) |
12 | zcn 12616 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
13 | 2, 12 | ax-mp 5 | . . . . . . . . . 10 ⊢ 𝑁 ∈ ℂ |
14 | subadd 11509 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) | |
15 | 13, 14 | mp3an1 1447 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) |
16 | addcom 11445 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑧 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑧)) | |
17 | 16 | eqeq1d 2737 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑧 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
18 | 15, 17 | bitrd 279 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
19 | 8, 11, 18 | syl2an 596 | . . . . . . 7 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
20 | eqcom 2742 | . . . . . . 7 ⊢ ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁 − 𝑧)) | |
21 | eqcom 2742 | . . . . . . 7 ⊢ (((𝑞 · 𝐷) + 𝑧) = 𝑁 ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)) | |
22 | 19, 20, 21 | 3bitr3g 313 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
23 | 22 | rexbidva 3175 | . . . . 5 ⊢ (𝑧 ∈ ℕ0 → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
24 | 7, 23 | bitrd 279 | . . . 4 ⊢ (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
25 | 24 | pm5.32i 574 | . . 3 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑧)) ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
26 | oveq2 7439 | . . . . 5 ⊢ (𝑟 = 𝑧 → (𝑁 − 𝑟) = (𝑁 − 𝑧)) | |
27 | 26 | breq2d 5160 | . . . 4 ⊢ (𝑟 = 𝑧 → (𝐷 ∥ (𝑁 − 𝑟) ↔ 𝐷 ∥ (𝑁 − 𝑧))) |
28 | divalglem2.4 | . . . 4 ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} | |
29 | 27, 28 | elrab2 3698 | . . 3 ⊢ (𝑧 ∈ 𝑆 ↔ (𝑧 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑧))) |
30 | oveq2 7439 | . . . . . 6 ⊢ (𝑟 = 𝑧 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑧)) | |
31 | 30 | eqeq2d 2746 | . . . . 5 ⊢ (𝑟 = 𝑧 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
32 | 31 | rexbidv 3177 | . . . 4 ⊢ (𝑟 = 𝑧 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
33 | 32 | elrab 3695 | . . 3 ⊢ (𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
34 | 25, 29, 33 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ 𝑆 ↔ 𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}) |
35 | 34 | eqriv 2732 | 1 ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 class class class wbr 5148 (class class class)co 7431 ℂcc 11151 0cc0 11153 + caddc 11156 · cmul 11158 − cmin 11490 ℕ0cn0 12524 ℤcz 12611 ∥ cdvds 16287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-dvds 16288 |
This theorem is referenced by: divalglem10 16436 |
Copyright terms: Public domain | W3C validator |