| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divalglem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for divalg 16349. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
| divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
| divalglem1.3 | ⊢ 𝐷 ≠ 0 |
| divalglem2.4 | ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} |
| Ref | Expression |
|---|---|
| divalglem4 | ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.2 | . . . . . 6 ⊢ 𝐷 ∈ ℤ | |
| 2 | divalglem0.1 | . . . . . . 7 ⊢ 𝑁 ∈ ℤ | |
| 3 | nn0z 12530 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ0 → 𝑧 ∈ ℤ) | |
| 4 | zsubcl 12551 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 − 𝑧) ∈ ℤ) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . . . 6 ⊢ (𝑧 ∈ ℕ0 → (𝑁 − 𝑧) ∈ ℤ) |
| 6 | divides 16200 | . . . . . 6 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑧) ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) |
| 8 | nn0cn 12428 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ) | |
| 9 | zmulcl 12558 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ) | |
| 10 | 1, 9 | mpan2 691 | . . . . . . . . 9 ⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℤ) |
| 11 | 10 | zcnd 12615 | . . . . . . . 8 ⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℂ) |
| 12 | zcn 12510 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 13 | 2, 12 | ax-mp 5 | . . . . . . . . . 10 ⊢ 𝑁 ∈ ℂ |
| 14 | subadd 11400 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) | |
| 15 | 13, 14 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) |
| 16 | addcom 11336 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑧 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑧)) | |
| 17 | 16 | eqeq1d 2731 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑧 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
| 18 | 15, 17 | bitrd 279 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
| 19 | 8, 11, 18 | syl2an 596 | . . . . . . 7 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
| 20 | eqcom 2736 | . . . . . . 7 ⊢ ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁 − 𝑧)) | |
| 21 | eqcom 2736 | . . . . . . 7 ⊢ (((𝑞 · 𝐷) + 𝑧) = 𝑁 ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)) | |
| 22 | 19, 20, 21 | 3bitr3g 313 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 23 | 22 | rexbidva 3155 | . . . . 5 ⊢ (𝑧 ∈ ℕ0 → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 24 | 7, 23 | bitrd 279 | . . . 4 ⊢ (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 25 | 24 | pm5.32i 574 | . . 3 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑧)) ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 26 | oveq2 7377 | . . . . 5 ⊢ (𝑟 = 𝑧 → (𝑁 − 𝑟) = (𝑁 − 𝑧)) | |
| 27 | 26 | breq2d 5114 | . . . 4 ⊢ (𝑟 = 𝑧 → (𝐷 ∥ (𝑁 − 𝑟) ↔ 𝐷 ∥ (𝑁 − 𝑧))) |
| 28 | divalglem2.4 | . . . 4 ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} | |
| 29 | 27, 28 | elrab2 3659 | . . 3 ⊢ (𝑧 ∈ 𝑆 ↔ (𝑧 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑧))) |
| 30 | oveq2 7377 | . . . . . 6 ⊢ (𝑟 = 𝑧 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑧)) | |
| 31 | 30 | eqeq2d 2740 | . . . . 5 ⊢ (𝑟 = 𝑧 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 32 | 31 | rexbidv 3157 | . . . 4 ⊢ (𝑟 = 𝑧 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 33 | 32 | elrab 3656 | . . 3 ⊢ (𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 34 | 25, 29, 33 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ 𝑆 ↔ 𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}) |
| 35 | 34 | eqriv 2726 | 1 ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3402 class class class wbr 5102 (class class class)co 7369 ℂcc 11042 0cc0 11044 + caddc 11047 · cmul 11049 − cmin 11381 ℕ0cn0 12418 ℤcz 12505 ∥ cdvds 16198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-dvds 16199 |
| This theorem is referenced by: divalglem10 16348 |
| Copyright terms: Public domain | W3C validator |