Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divalglem4 | Structured version Visualization version GIF version |
Description: Lemma for divalg 16112. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
divalglem1.3 | ⊢ 𝐷 ≠ 0 |
divalglem2.4 | ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} |
Ref | Expression |
---|---|
divalglem4 | ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem0.2 | . . . . . 6 ⊢ 𝐷 ∈ ℤ | |
2 | divalglem0.1 | . . . . . . 7 ⊢ 𝑁 ∈ ℤ | |
3 | nn0z 12343 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ0 → 𝑧 ∈ ℤ) | |
4 | zsubcl 12362 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 − 𝑧) ∈ ℤ) | |
5 | 2, 3, 4 | sylancr 587 | . . . . . 6 ⊢ (𝑧 ∈ ℕ0 → (𝑁 − 𝑧) ∈ ℤ) |
6 | divides 15965 | . . . . . 6 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑧) ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) | |
7 | 1, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) |
8 | nn0cn 12243 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ) | |
9 | zmulcl 12369 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ) | |
10 | 1, 9 | mpan2 688 | . . . . . . . . 9 ⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℤ) |
11 | 10 | zcnd 12427 | . . . . . . . 8 ⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℂ) |
12 | zcn 12324 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
13 | 2, 12 | ax-mp 5 | . . . . . . . . . 10 ⊢ 𝑁 ∈ ℂ |
14 | subadd 11224 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) | |
15 | 13, 14 | mp3an1 1447 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) |
16 | addcom 11161 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑧 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑧)) | |
17 | 16 | eqeq1d 2740 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑧 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
18 | 15, 17 | bitrd 278 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
19 | 8, 11, 18 | syl2an 596 | . . . . . . 7 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
20 | eqcom 2745 | . . . . . . 7 ⊢ ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁 − 𝑧)) | |
21 | eqcom 2745 | . . . . . . 7 ⊢ (((𝑞 · 𝐷) + 𝑧) = 𝑁 ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)) | |
22 | 19, 20, 21 | 3bitr3g 313 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
23 | 22 | rexbidva 3225 | . . . . 5 ⊢ (𝑧 ∈ ℕ0 → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
24 | 7, 23 | bitrd 278 | . . . 4 ⊢ (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
25 | 24 | pm5.32i 575 | . . 3 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑧)) ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
26 | oveq2 7283 | . . . . 5 ⊢ (𝑟 = 𝑧 → (𝑁 − 𝑟) = (𝑁 − 𝑧)) | |
27 | 26 | breq2d 5086 | . . . 4 ⊢ (𝑟 = 𝑧 → (𝐷 ∥ (𝑁 − 𝑟) ↔ 𝐷 ∥ (𝑁 − 𝑧))) |
28 | divalglem2.4 | . . . 4 ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} | |
29 | 27, 28 | elrab2 3627 | . . 3 ⊢ (𝑧 ∈ 𝑆 ↔ (𝑧 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑧))) |
30 | oveq2 7283 | . . . . . 6 ⊢ (𝑟 = 𝑧 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑧)) | |
31 | 30 | eqeq2d 2749 | . . . . 5 ⊢ (𝑟 = 𝑧 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
32 | 31 | rexbidv 3226 | . . . 4 ⊢ (𝑟 = 𝑧 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
33 | 32 | elrab 3624 | . . 3 ⊢ (𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
34 | 25, 29, 33 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ 𝑆 ↔ 𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}) |
35 | 34 | eqriv 2735 | 1 ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 class class class wbr 5074 (class class class)co 7275 ℂcc 10869 0cc0 10871 + caddc 10874 · cmul 10876 − cmin 11205 ℕ0cn0 12233 ℤcz 12319 ∥ cdvds 15963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-dvds 15964 |
This theorem is referenced by: divalglem10 16111 |
Copyright terms: Public domain | W3C validator |