MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem4 Structured version   Visualization version   GIF version

Theorem divalglem4 16105
Description: Lemma for divalg 16112. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem4 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟   𝐷,𝑞,𝑟   𝑁,𝑞
Allowed substitution hints:   𝑆(𝑟,𝑞)

Proof of Theorem divalglem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 divalglem0.2 . . . . . 6 𝐷 ∈ ℤ
2 divalglem0.1 . . . . . . 7 𝑁 ∈ ℤ
3 nn0z 12343 . . . . . . 7 (𝑧 ∈ ℕ0𝑧 ∈ ℤ)
4 zsubcl 12362 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁𝑧) ∈ ℤ)
52, 3, 4sylancr 587 . . . . . 6 (𝑧 ∈ ℕ0 → (𝑁𝑧) ∈ ℤ)
6 divides 15965 . . . . . 6 ((𝐷 ∈ ℤ ∧ (𝑁𝑧) ∈ ℤ) → (𝐷 ∥ (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑧)))
71, 5, 6sylancr 587 . . . . 5 (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑧)))
8 nn0cn 12243 . . . . . . . 8 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
9 zmulcl 12369 . . . . . . . . . 10 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ)
101, 9mpan2 688 . . . . . . . . 9 (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℤ)
1110zcnd 12427 . . . . . . . 8 (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℂ)
12 zcn 12324 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
132, 12ax-mp 5 . . . . . . . . . 10 𝑁 ∈ ℂ
14 subadd 11224 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁))
1513, 14mp3an1 1447 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁))
16 addcom 11161 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑧 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑧))
1716eqeq1d 2740 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑧 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁))
1815, 17bitrd 278 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁))
198, 11, 18syl2an 596 . . . . . . 7 ((𝑧 ∈ ℕ0𝑞 ∈ ℤ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁))
20 eqcom 2745 . . . . . . 7 ((𝑁𝑧) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁𝑧))
21 eqcom 2745 . . . . . . 7 (((𝑞 · 𝐷) + 𝑧) = 𝑁𝑁 = ((𝑞 · 𝐷) + 𝑧))
2219, 20, 213bitr3g 313 . . . . . 6 ((𝑧 ∈ ℕ0𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑧) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
2322rexbidva 3225 . . . . 5 (𝑧 ∈ ℕ0 → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
247, 23bitrd 278 . . . 4 (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
2524pm5.32i 575 . . 3 ((𝑧 ∈ ℕ0𝐷 ∥ (𝑁𝑧)) ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
26 oveq2 7283 . . . . 5 (𝑟 = 𝑧 → (𝑁𝑟) = (𝑁𝑧))
2726breq2d 5086 . . . 4 (𝑟 = 𝑧 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑧)))
28 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
2927, 28elrab2 3627 . . 3 (𝑧𝑆 ↔ (𝑧 ∈ ℕ0𝐷 ∥ (𝑁𝑧)))
30 oveq2 7283 . . . . . 6 (𝑟 = 𝑧 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑧))
3130eqeq2d 2749 . . . . 5 (𝑟 = 𝑧 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
3231rexbidv 3226 . . . 4 (𝑟 = 𝑧 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
3332elrab 3624 . . 3 (𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
3425, 29, 333bitr4i 303 . 2 (𝑧𝑆𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)})
3534eqriv 2735 1 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068   class class class wbr 5074  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874   · cmul 10876  cmin 11205  0cn0 12233  cz 12319  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-dvds 15964
This theorem is referenced by:  divalglem10  16111
  Copyright terms: Public domain W3C validator