MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem4 Structured version   Visualization version   GIF version

Theorem divalglem4 16366
Description: Lemma for divalg 16373. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem4 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟   𝐷,𝑞,𝑟   𝑁,𝑞
Allowed substitution hints:   𝑆(𝑟,𝑞)

Proof of Theorem divalglem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 divalglem0.2 . . . . . 6 𝐷 ∈ ℤ
2 divalglem0.1 . . . . . . 7 𝑁 ∈ ℤ
3 nn0z 12554 . . . . . . 7 (𝑧 ∈ ℕ0𝑧 ∈ ℤ)
4 zsubcl 12575 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁𝑧) ∈ ℤ)
52, 3, 4sylancr 587 . . . . . 6 (𝑧 ∈ ℕ0 → (𝑁𝑧) ∈ ℤ)
6 divides 16224 . . . . . 6 ((𝐷 ∈ ℤ ∧ (𝑁𝑧) ∈ ℤ) → (𝐷 ∥ (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑧)))
71, 5, 6sylancr 587 . . . . 5 (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑧)))
8 nn0cn 12452 . . . . . . . 8 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
9 zmulcl 12582 . . . . . . . . . 10 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ)
101, 9mpan2 691 . . . . . . . . 9 (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℤ)
1110zcnd 12639 . . . . . . . 8 (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℂ)
12 zcn 12534 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
132, 12ax-mp 5 . . . . . . . . . 10 𝑁 ∈ ℂ
14 subadd 11424 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁))
1513, 14mp3an1 1450 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁))
16 addcom 11360 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑧 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑧))
1716eqeq1d 2731 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑧 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁))
1815, 17bitrd 279 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁))
198, 11, 18syl2an 596 . . . . . . 7 ((𝑧 ∈ ℕ0𝑞 ∈ ℤ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁))
20 eqcom 2736 . . . . . . 7 ((𝑁𝑧) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁𝑧))
21 eqcom 2736 . . . . . . 7 (((𝑞 · 𝐷) + 𝑧) = 𝑁𝑁 = ((𝑞 · 𝐷) + 𝑧))
2219, 20, 213bitr3g 313 . . . . . 6 ((𝑧 ∈ ℕ0𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑧) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
2322rexbidva 3155 . . . . 5 (𝑧 ∈ ℕ0 → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
247, 23bitrd 279 . . . 4 (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
2524pm5.32i 574 . . 3 ((𝑧 ∈ ℕ0𝐷 ∥ (𝑁𝑧)) ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
26 oveq2 7395 . . . . 5 (𝑟 = 𝑧 → (𝑁𝑟) = (𝑁𝑧))
2726breq2d 5119 . . . 4 (𝑟 = 𝑧 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑧)))
28 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
2927, 28elrab2 3662 . . 3 (𝑧𝑆 ↔ (𝑧 ∈ ℕ0𝐷 ∥ (𝑁𝑧)))
30 oveq2 7395 . . . . . 6 (𝑟 = 𝑧 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑧))
3130eqeq2d 2740 . . . . 5 (𝑟 = 𝑧 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
3231rexbidv 3157 . . . 4 (𝑟 = 𝑧 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
3332elrab 3659 . . 3 (𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
3425, 29, 333bitr4i 303 . 2 (𝑧𝑆𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)})
3534eqriv 2726 1 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405   class class class wbr 5107  (class class class)co 7387  cc 11066  0cc0 11068   + caddc 11071   · cmul 11073  cmin 11405  0cn0 12442  cz 12529  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-dvds 16223
This theorem is referenced by:  divalglem10  16372
  Copyright terms: Public domain W3C validator