| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divalglem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for divalg 16314. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
| divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
| divalglem1.3 | ⊢ 𝐷 ≠ 0 |
| divalglem2.4 | ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} |
| Ref | Expression |
|---|---|
| divalglem4 | ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.2 | . . . . . 6 ⊢ 𝐷 ∈ ℤ | |
| 2 | divalglem0.1 | . . . . . . 7 ⊢ 𝑁 ∈ ℤ | |
| 3 | nn0z 12493 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ0 → 𝑧 ∈ ℤ) | |
| 4 | zsubcl 12514 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 − 𝑧) ∈ ℤ) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . . . 6 ⊢ (𝑧 ∈ ℕ0 → (𝑁 − 𝑧) ∈ ℤ) |
| 6 | divides 16165 | . . . . . 6 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑧) ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧))) |
| 8 | nn0cn 12391 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ) | |
| 9 | zmulcl 12521 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ) | |
| 10 | 1, 9 | mpan2 691 | . . . . . . . . 9 ⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℤ) |
| 11 | 10 | zcnd 12578 | . . . . . . . 8 ⊢ (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℂ) |
| 12 | zcn 12473 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 13 | 2, 12 | ax-mp 5 | . . . . . . . . . 10 ⊢ 𝑁 ∈ ℂ |
| 14 | subadd 11363 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) | |
| 15 | 13, 14 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁)) |
| 16 | addcom 11299 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑧 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑧)) | |
| 17 | 16 | eqeq1d 2733 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑧 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
| 18 | 15, 17 | bitrd 279 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
| 19 | 8, 11, 18 | syl2an 596 | . . . . . . 7 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ) → ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁)) |
| 20 | eqcom 2738 | . . . . . . 7 ⊢ ((𝑁 − 𝑧) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁 − 𝑧)) | |
| 21 | eqcom 2738 | . . . . . . 7 ⊢ (((𝑞 · 𝐷) + 𝑧) = 𝑁 ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)) | |
| 22 | 19, 20, 21 | 3bitr3g 313 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 23 | 22 | rexbidva 3154 | . . . . 5 ⊢ (𝑧 ∈ ℕ0 → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 24 | 7, 23 | bitrd 279 | . . . 4 ⊢ (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁 − 𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 25 | 24 | pm5.32i 574 | . . 3 ⊢ ((𝑧 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑧)) ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 26 | oveq2 7354 | . . . . 5 ⊢ (𝑟 = 𝑧 → (𝑁 − 𝑟) = (𝑁 − 𝑧)) | |
| 27 | 26 | breq2d 5101 | . . . 4 ⊢ (𝑟 = 𝑧 → (𝐷 ∥ (𝑁 − 𝑟) ↔ 𝐷 ∥ (𝑁 − 𝑧))) |
| 28 | divalglem2.4 | . . . 4 ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} | |
| 29 | 27, 28 | elrab2 3645 | . . 3 ⊢ (𝑧 ∈ 𝑆 ↔ (𝑧 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑧))) |
| 30 | oveq2 7354 | . . . . . 6 ⊢ (𝑟 = 𝑧 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑧)) | |
| 31 | 30 | eqeq2d 2742 | . . . . 5 ⊢ (𝑟 = 𝑧 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 32 | 31 | rexbidv 3156 | . . . 4 ⊢ (𝑟 = 𝑧 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 33 | 32 | elrab 3642 | . . 3 ⊢ (𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧))) |
| 34 | 25, 29, 33 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ 𝑆 ↔ 𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}) |
| 35 | 34 | eqriv 2728 | 1 ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 class class class wbr 5089 (class class class)co 7346 ℂcc 11004 0cc0 11006 + caddc 11009 · cmul 11011 − cmin 11344 ℕ0cn0 12381 ℤcz 12468 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-dvds 16164 |
| This theorem is referenced by: divalglem10 16313 |
| Copyright terms: Public domain | W3C validator |