MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem4 Structured version   Visualization version   GIF version

Theorem divalglem4 16433
Description: Lemma for divalg 16440. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem4 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟   𝐷,𝑞,𝑟   𝑁,𝑞
Allowed substitution hints:   𝑆(𝑟,𝑞)

Proof of Theorem divalglem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 divalglem0.2 . . . . . 6 𝐷 ∈ ℤ
2 divalglem0.1 . . . . . . 7 𝑁 ∈ ℤ
3 nn0z 12638 . . . . . . 7 (𝑧 ∈ ℕ0𝑧 ∈ ℤ)
4 zsubcl 12659 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁𝑧) ∈ ℤ)
52, 3, 4sylancr 587 . . . . . 6 (𝑧 ∈ ℕ0 → (𝑁𝑧) ∈ ℤ)
6 divides 16292 . . . . . 6 ((𝐷 ∈ ℤ ∧ (𝑁𝑧) ∈ ℤ) → (𝐷 ∥ (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑧)))
71, 5, 6sylancr 587 . . . . 5 (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑧)))
8 nn0cn 12536 . . . . . . . 8 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
9 zmulcl 12666 . . . . . . . . . 10 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ)
101, 9mpan2 691 . . . . . . . . 9 (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℤ)
1110zcnd 12723 . . . . . . . 8 (𝑞 ∈ ℤ → (𝑞 · 𝐷) ∈ ℂ)
12 zcn 12618 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
132, 12ax-mp 5 . . . . . . . . . 10 𝑁 ∈ ℂ
14 subadd 11511 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁))
1513, 14mp3an1 1450 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ (𝑧 + (𝑞 · 𝐷)) = 𝑁))
16 addcom 11447 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑧 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑧))
1716eqeq1d 2739 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑧 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁))
1815, 17bitrd 279 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁))
198, 11, 18syl2an 596 . . . . . . 7 ((𝑧 ∈ ℕ0𝑞 ∈ ℤ) → ((𝑁𝑧) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑧) = 𝑁))
20 eqcom 2744 . . . . . . 7 ((𝑁𝑧) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁𝑧))
21 eqcom 2744 . . . . . . 7 (((𝑞 · 𝐷) + 𝑧) = 𝑁𝑁 = ((𝑞 · 𝐷) + 𝑧))
2219, 20, 213bitr3g 313 . . . . . 6 ((𝑧 ∈ ℕ0𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑧) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
2322rexbidva 3177 . . . . 5 (𝑧 ∈ ℕ0 → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
247, 23bitrd 279 . . . 4 (𝑧 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑧) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
2524pm5.32i 574 . . 3 ((𝑧 ∈ ℕ0𝐷 ∥ (𝑁𝑧)) ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
26 oveq2 7439 . . . . 5 (𝑟 = 𝑧 → (𝑁𝑟) = (𝑁𝑧))
2726breq2d 5155 . . . 4 (𝑟 = 𝑧 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑧)))
28 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
2927, 28elrab2 3695 . . 3 (𝑧𝑆 ↔ (𝑧 ∈ ℕ0𝐷 ∥ (𝑁𝑧)))
30 oveq2 7439 . . . . . 6 (𝑟 = 𝑧 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑧))
3130eqeq2d 2748 . . . . 5 (𝑟 = 𝑧 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
3231rexbidv 3179 . . . 4 (𝑟 = 𝑧 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
3332elrab 3692 . . 3 (𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} ↔ (𝑧 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑧)))
3425, 29, 333bitr4i 303 . 2 (𝑧𝑆𝑧 ∈ {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)})
3534eqriv 2734 1 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436   class class class wbr 5143  (class class class)co 7431  cc 11153  0cc0 11155   + caddc 11158   · cmul 11160  cmin 11492  0cn0 12526  cz 12613  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-dvds 16291
This theorem is referenced by:  divalglem10  16439
  Copyright terms: Public domain W3C validator