MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmpwdvds Structured version   Visualization version   GIF version

Theorem prmpwdvds 16882
Description: A relation involving divisibility by a prime power. (Contributed by Mario Carneiro, 2-Mar-2014.)
Assertion
Ref Expression
prmpwdvds (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ (𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))) → (𝑃𝑁) ∥ 𝐷)

Proof of Theorem prmpwdvds
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7397 . . . . . 6 (𝑘 = 𝐾 → (𝑘 · (𝑃𝑁)) = (𝐾 · (𝑃𝑁)))
21breq2d 5122 . . . . 5 (𝑘 = 𝐾 → (𝐷 ∥ (𝑘 · (𝑃𝑁)) ↔ 𝐷 ∥ (𝐾 · (𝑃𝑁))))
3 oveq1 7397 . . . . . . 7 (𝑘 = 𝐾 → (𝑘 · (𝑃↑(𝑁 − 1))) = (𝐾 · (𝑃↑(𝑁 − 1))))
43breq2d 5122 . . . . . 6 (𝑘 = 𝐾 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1))) ↔ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))))
54notbid 318 . . . . 5 (𝑘 = 𝐾 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1))) ↔ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))))
62, 5anbi12d 632 . . . 4 (𝑘 = 𝐾 → ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) ↔ (𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))))
76imbi1d 341 . . 3 (𝑘 = 𝐾 → (((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷) ↔ ((𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
8 oveq2 7398 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑃𝑥) = (𝑃↑1))
98oveq2d 7406 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃↑1)))
109breq2d 5122 . . . . . . . . . . 11 (𝑥 = 1 → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃↑1))))
11 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝑥 − 1) = (1 − 1))
1211oveq2d 7406 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑃↑(𝑥 − 1)) = (𝑃↑(1 − 1)))
1312oveq2d 7406 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑(1 − 1))))
1413breq2d 5122 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))))
1514notbid 318 . . . . . . . . . . 11 (𝑥 = 1 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))))
1610, 15anbi12d 632 . . . . . . . . . 10 (𝑥 = 1 → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1))))))
178breq1d 5120 . . . . . . . . . 10 (𝑥 = 1 → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃↑1) ∥ 𝐷))
1816, 17imbi12d 344 . . . . . . . . 9 (𝑥 = 1 → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷)))
1918ralbidv 3157 . . . . . . . 8 (𝑥 = 1 → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷)))
2019imbi2d 340 . . . . . . 7 (𝑥 = 1 → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷))))
21 oveq2 7398 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑃𝑥) = (𝑃𝑛))
2221oveq2d 7406 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃𝑛)))
2322breq2d 5122 . . . . . . . . . . 11 (𝑥 = 𝑛 → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
24 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑥 − 1) = (𝑛 − 1))
2524oveq2d 7406 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (𝑃↑(𝑥 − 1)) = (𝑃↑(𝑛 − 1)))
2625oveq2d 7406 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑(𝑛 − 1))))
2726breq2d 5122 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))))
2827notbid 318 . . . . . . . . . . 11 (𝑥 = 𝑛 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))))
2923, 28anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑛 → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1))))))
3021breq1d 5120 . . . . . . . . . 10 (𝑥 = 𝑛 → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃𝑛) ∥ 𝐷))
3129, 30imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑛 → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
3231ralbidv 3157 . . . . . . . 8 (𝑥 = 𝑛 → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
3332imbi2d 340 . . . . . . 7 (𝑥 = 𝑛 → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷))))
34 oveq2 7398 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → (𝑃𝑥) = (𝑃↑(𝑛 + 1)))
3534oveq2d 7406 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃↑(𝑛 + 1))))
3635breq2d 5122 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1)))))
37 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → (𝑥 − 1) = ((𝑛 + 1) − 1))
3837oveq2d 7406 . . . . . . . . . . . . . 14 (𝑥 = (𝑛 + 1) → (𝑃↑(𝑥 − 1)) = (𝑃↑((𝑛 + 1) − 1)))
3938oveq2d 7406 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑((𝑛 + 1) − 1))))
4039breq2d 5122 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))))
4140notbid 318 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))))
4236, 41anbi12d 632 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1))))))
4334breq1d 5120 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃↑(𝑛 + 1)) ∥ 𝐷))
4442, 43imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
4544ralbidv 3157 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
4645imbi2d 340 . . . . . . 7 (𝑥 = (𝑛 + 1) → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷))))
47 oveq2 7398 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4847oveq2d 7406 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃𝑁)))
4948breq2d 5122 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑁))))
50 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1))
5150oveq2d 7406 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑃↑(𝑥 − 1)) = (𝑃↑(𝑁 − 1)))
5251oveq2d 7406 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑(𝑁 − 1))))
5352breq2d 5122 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))))
5453notbid 318 . . . . . . . . . . 11 (𝑥 = 𝑁 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))))
5549, 54anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1))))))
5647breq1d 5120 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃𝑁) ∥ 𝐷))
5755, 56imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑁 → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
5857ralbidv 3157 . . . . . . . 8 (𝑥 = 𝑁 → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
5958imbi2d 340 . . . . . . 7 (𝑥 = 𝑁 → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))))
60 breq1 5113 . . . . . . . . . . . . . 14 (𝑥 = 𝐷 → (𝑥 ∥ (𝑘 · 𝑃) ↔ 𝐷 ∥ (𝑘 · 𝑃)))
61 breq1 5113 . . . . . . . . . . . . . . 15 (𝑥 = 𝐷 → (𝑥𝑘𝐷𝑘))
6261notbid 318 . . . . . . . . . . . . . 14 (𝑥 = 𝐷 → (¬ 𝑥𝑘 ↔ ¬ 𝐷𝑘))
6360, 62anbi12d 632 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) ↔ (𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘)))
64 breq2 5114 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → (𝑃𝑥𝑃𝐷))
6563, 64imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝐷 → (((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥) ↔ ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷)))
6665imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝐷 → (((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥)) ↔ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷))))
67 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → 𝑃 ∈ ℙ)
68 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → 𝑥 ∈ ℤ)
69 coprm 16688 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
7067, 68, 69syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
71 zcn 12541 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
7271ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
73 prmz 16652 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
7473ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℤ)
7574zcnd 12646 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℂ)
7672, 75mulcomd 11202 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑃) = (𝑃 · 𝑘))
7776breq2d 5122 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑥 ∥ (𝑘 · 𝑃) ↔ 𝑥 ∥ (𝑃 · 𝑘)))
78 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑥 ∈ ℤ)
7974, 78gcdcomd 16491 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 gcd 𝑥) = (𝑥 gcd 𝑃))
8079eqeq1d 2732 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃 gcd 𝑥) = 1 ↔ (𝑥 gcd 𝑃) = 1))
8177, 80anbi12d 632 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ (𝑃 gcd 𝑥) = 1) ↔ (𝑥 ∥ (𝑃 · 𝑘) ∧ (𝑥 gcd 𝑃) = 1)))
82 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
83 coprmdvds 16630 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑥 ∥ (𝑃 · 𝑘) ∧ (𝑥 gcd 𝑃) = 1) → 𝑥𝑘))
8478, 74, 82, 83syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑃 · 𝑘) ∧ (𝑥 gcd 𝑃) = 1) → 𝑥𝑘))
8581, 84sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ (𝑃 gcd 𝑥) = 1) → 𝑥𝑘))
8685expdimp 452 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → ((𝑃 gcd 𝑥) = 1 → 𝑥𝑘))
8770, 86sylbid 240 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → (¬ 𝑃𝑥𝑥𝑘))
8887con1d 145 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → (¬ 𝑥𝑘𝑃𝑥))
8988expimpd 453 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥))
9089ex 412 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥)))
9166, 90vtoclga 3546 . . . . . . . . . 10 (𝐷 ∈ ℤ → ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷)))
9291impl 455 . . . . . . . . 9 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷))
9373zcnd 12646 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
9493exp1d 14113 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃)
9594ad2antlr 727 . . . . . . . . . . . 12 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑1) = 𝑃)
9695oveq2d 7406 . . . . . . . . . . 11 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑃↑1)) = (𝑘 · 𝑃))
9796breq2d 5122 . . . . . . . . . 10 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝐷 ∥ (𝑘 · (𝑃↑1)) ↔ 𝐷 ∥ (𝑘 · 𝑃)))
98 1m1e0 12265 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
9998oveq2i 7401 . . . . . . . . . . . . . . 15 (𝑃↑(1 − 1)) = (𝑃↑0)
10073ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → 𝑃 ∈ ℤ)
101100zcnd 12646 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → 𝑃 ∈ ℂ)
102101exp0d 14112 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑0) = 1)
10399, 102eqtrid 2777 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑(1 − 1)) = 1)
104103oveq2d 7406 . . . . . . . . . . . . 13 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑃↑(1 − 1))) = (𝑘 · 1))
10571adantl 481 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
106105mulridd 11198 . . . . . . . . . . . . 13 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · 1) = 𝑘)
107104, 106eqtrd 2765 . . . . . . . . . . . 12 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑃↑(1 − 1))) = 𝑘)
108107breq2d 5122 . . . . . . . . . . 11 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝐷 ∥ (𝑘 · (𝑃↑(1 − 1))) ↔ 𝐷𝑘))
109108notbid 318 . . . . . . . . . 10 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1))) ↔ ¬ 𝐷𝑘))
11097, 109anbi12d 632 . . . . . . . . 9 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) ↔ (𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘)))
111101exp1d 14113 . . . . . . . . . 10 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑1) = 𝑃)
112111breq1d 5120 . . . . . . . . 9 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝑃↑1) ∥ 𝐷𝑃𝐷))
11392, 110, 1123imtr4d 294 . . . . . . . 8 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷))
114113ralrimiva 3126 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷))
115 oveq1 7397 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘 · (𝑃𝑛)) = (𝑥 · (𝑃𝑛)))
116115breq2d 5122 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → (𝐷 ∥ (𝑘 · (𝑃𝑛)) ↔ 𝐷 ∥ (𝑥 · (𝑃𝑛))))
117 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑘 · (𝑃↑(𝑛 − 1))) = (𝑥 · (𝑃↑(𝑛 − 1))))
118117breq2d 5122 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1))) ↔ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))))
119118notbid 318 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1))) ↔ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))))
120116, 119anbi12d 632 . . . . . . . . . . . 12 (𝑘 = 𝑥 → ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) ↔ (𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1))))))
121120imbi1d 341 . . . . . . . . . . 11 (𝑘 = 𝑥 → (((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
122121cbvralvw 3216 . . . . . . . . . 10 (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷))
123 simprr 772 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
12473ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℤ)
125123, 124zmulcld 12651 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑃) ∈ ℤ)
126 oveq1 7397 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 · 𝑃) → (𝑥 · (𝑃𝑛)) = ((𝑘 · 𝑃) · (𝑃𝑛)))
127126breq2d 5122 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑘 · 𝑃) → (𝐷 ∥ (𝑥 · (𝑃𝑛)) ↔ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛))))
128 oveq1 7397 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑘 · 𝑃) → (𝑥 · (𝑃↑(𝑛 − 1))) = ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))))
129128breq2d 5122 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 · 𝑃) → (𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1))) ↔ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))))
130129notbid 318 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑘 · 𝑃) → (¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1))) ↔ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))))
131127, 130anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑘 · 𝑃) → ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) ↔ (𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))))))
132131imbi1d 341 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 · 𝑃) → (((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
133132rspcv 3587 . . . . . . . . . . . . . 14 ((𝑘 · 𝑃) ∈ ℤ → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
134125, 133syl 17 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
135 nnnn0 12456 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
136135ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℕ0)
137 zexpcl 14048 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℤ)
138124, 136, 137syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℤ)
139 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝐷 ∈ ℤ)
140 divides 16231 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑛) ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝑃𝑛) ∥ 𝐷 ↔ ∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷))
141138, 139, 140syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃𝑛) ∥ 𝐷 ↔ ∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷))
14289adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥))
143 prmnn 16651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
144143ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℕ)
145144nncnd 12209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℂ)
146135ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℕ0)
147145, 146expp1d 14119 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 + 1)) = ((𝑃𝑛) · 𝑃))
148144, 146nnexpcld 14217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℕ)
149148nncnd 12209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℂ)
150149, 145mulcomd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃𝑛) · 𝑃) = (𝑃 · (𝑃𝑛)))
151147, 150eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 + 1)) = (𝑃 · (𝑃𝑛)))
152151oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃↑(𝑛 + 1))) = (𝑘 · (𝑃 · (𝑃𝑛))))
15371ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
154153, 145, 149mulassd 11204 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃𝑛)) = (𝑘 · (𝑃 · (𝑃𝑛))))
155152, 154eqtr4d 2768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃↑(𝑛 + 1))) = ((𝑘 · 𝑃) · (𝑃𝑛)))
156155breq2d 5122 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ↔ (𝑥 · (𝑃𝑛)) ∥ ((𝑘 · 𝑃) · (𝑃𝑛))))
157 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑥 ∈ ℤ)
158 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
159144nnzd 12563 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℤ)
160158, 159zmulcld 12651 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑃) ∈ ℤ)
161148nnzd 12563 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℤ)
162148nnne0d 12243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ≠ 0)
163 dvdsmulcr 16262 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℤ ∧ (𝑘 · 𝑃) ∈ ℤ ∧ ((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0)) → ((𝑥 · (𝑃𝑛)) ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ↔ 𝑥 ∥ (𝑘 · 𝑃)))
164157, 160, 161, 162, 163syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ↔ 𝑥 ∥ (𝑘 · 𝑃)))
165156, 164bitrd 279 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ↔ 𝑥 ∥ (𝑘 · 𝑃)))
166 dvdsmulcr 16262 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ ((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ 𝑥𝑘))
167157, 158, 161, 162, 166syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ 𝑥𝑘))
168167notbid 318 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ ¬ 𝑥𝑘))
169165, 168anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) ↔ (𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘)))
170151breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛)) ↔ (𝑃 · (𝑃𝑛)) ∥ (𝑥 · (𝑃𝑛))))
171 dvdsmulcr 16262 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ ((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0)) → ((𝑃 · (𝑃𝑛)) ∥ (𝑥 · (𝑃𝑛)) ↔ 𝑃𝑥))
172159, 157, 161, 162, 171syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃 · (𝑃𝑛)) ∥ (𝑥 · (𝑃𝑛)) ↔ 𝑃𝑥))
173170, 172bitrd 279 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛)) ↔ 𝑃𝑥))
174142, 169, 1733imtr4d 294 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛))))
175174an32s 652 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛))))
176 breq1 5113 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1)))))
177 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
178177notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 · (𝑃𝑛)) = 𝐷 → (¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
179176, 178anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 · (𝑃𝑛)) = 𝐷 → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛)))))
180 breq2 5114 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛)) ↔ (𝑃↑(𝑛 + 1)) ∥ 𝐷))
181179, 180imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛))) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
182175, 181syl5ibcom 245 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
183182rexlimdva 3135 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
184183adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
185141, 184sylbid 240 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃𝑛) ∥ 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
186185com23 86 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → ((𝑃𝑛) ∥ 𝐷 → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
187186a2d 29 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
18871ad2antll 729 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
189124zcnd 12646 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℂ)
190138zcnd 12646 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℂ)
191188, 189, 190mulassd 11204 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃𝑛)) = (𝑘 · (𝑃 · (𝑃𝑛))))
192189, 190mulcomd 11202 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃𝑛)) = ((𝑃𝑛) · 𝑃))
193189, 136expp1d 14119 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 + 1)) = ((𝑃𝑛) · 𝑃))
194192, 193eqtr4d 2768 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃𝑛)) = (𝑃↑(𝑛 + 1)))
195194oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃 · (𝑃𝑛))) = (𝑘 · (𝑃↑(𝑛 + 1))))
196191, 195eqtrd 2765 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃𝑛)) = (𝑘 · (𝑃↑(𝑛 + 1))))
197196breq2d 5122 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1)))))
198 nnm1nn0 12490 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
199198ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑛 − 1) ∈ ℕ0)
200 zexpcl 14048 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℤ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑃↑(𝑛 − 1)) ∈ ℤ)
201124, 199, 200syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 − 1)) ∈ ℤ)
202201zcnd 12646 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 − 1)) ∈ ℂ)
203188, 189, 202mulassd 11204 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) = (𝑘 · (𝑃 · (𝑃↑(𝑛 − 1)))))
204189, 202mulcomd 11202 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃↑(𝑛 − 1))) = ((𝑃↑(𝑛 − 1)) · 𝑃))
205 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℕ)
206 expm1t 14062 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (𝑃𝑛) = ((𝑃↑(𝑛 − 1)) · 𝑃))
207189, 205, 206syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) = ((𝑃↑(𝑛 − 1)) · 𝑃))
208204, 207eqtr4d 2768 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃↑(𝑛 − 1))) = (𝑃𝑛))
209208oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃 · (𝑃↑(𝑛 − 1)))) = (𝑘 · (𝑃𝑛)))
210203, 209eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) = (𝑘 · (𝑃𝑛)))
211210breq2d 5122 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
212211notbid 318 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
213197, 212anbi12d 632 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛)))))
214213imbi1d 341 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃𝑛) ∥ 𝐷)))
215 nncn 12201 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
216215ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℂ)
217 ax-1cn 11133 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
218 pncan 11434 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
219216, 217, 218sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑛 + 1) − 1) = 𝑛)
220219oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑((𝑛 + 1) − 1)) = (𝑃𝑛))
221220oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃↑((𝑛 + 1) − 1))) = (𝑘 · (𝑃𝑛)))
222221breq2d 5122 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
223222notbid 318 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
224223anbi2d 630 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛)))))
225224imbi1d 341 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
226187, 214, 2253imtr4d 294 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
227134, 226syld 47 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
228227anassrs 467 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
229228ralrimdva 3134 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ 𝑃 ∈ ℙ) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
230122, 229biimtrid 242 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ 𝑃 ∈ ℙ) → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
231230expl 457 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷))))
232231a2d 29 . . . . . . 7 (𝑛 ∈ ℕ → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)) → ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷))))
23320, 33, 46, 59, 114, 232nnind 12211 . . . . . 6 (𝑁 ∈ ℕ → ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
234233com12 32 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ ℕ → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
235234impr 454 . . . 4 ((𝐷 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))
236235adantll 714 . . 3 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))
237 simpll 766 . . 3 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → 𝐾 ∈ ℤ)
2387, 236, 237rspcdva 3592 . 2 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → ((𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))
2392383impia 1117 1 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ (𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))) → (𝑃𝑁) ∥ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  cn 12193  0cn0 12449  cz 12536  cexp 14033  cdvds 16229   gcd cgcd 16471  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649
This theorem is referenced by:  pockthlem  16883
  Copyright terms: Public domain W3C validator