Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr2dom Structured version   Visualization version   GIF version

Theorem pr2dom 43516
Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.)
Assertion
Ref Expression
pr2dom {𝐴, 𝐵} ≼ 2o

Proof of Theorem pr2dom
StepHypRef Expression
1 df-pr 4592 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 snex 5391 . . . 4 {𝐴} ∈ V
3 snex 5391 . . . 4 {𝐵} ∈ V
4 undjudom 10121 . . . 4 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}))
52, 3, 4mp2an 692 . . 3 ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵})
6 sn1dom 43515 . . . . . 6 {𝐴} ≼ 1o
7 djudom1 10136 . . . . . 6 (({𝐴} ≼ 1o ∧ {𝐵} ∈ V) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}))
86, 3, 7mp2an 692 . . . . 5 ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵})
9 sn1dom 43515 . . . . . 6 {𝐵} ≼ 1o
10 1on 8446 . . . . . 6 1o ∈ On
11 djudom2 10137 . . . . . 6 (({𝐵} ≼ 1o ∧ 1o ∈ On) → (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o))
129, 10, 11mp2an 692 . . . . 5 (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)
13 domtr 8978 . . . . 5 ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) ∧ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o))
148, 12, 13mp2an 692 . . . 4 ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o)
15 dju1p1e2 10127 . . . 4 (1o ⊔ 1o) ≈ 2o
16 domentr 8984 . . . 4 ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → ({𝐴} ⊔ {𝐵}) ≼ 2o)
1714, 15, 16mp2an 692 . . 3 ({𝐴} ⊔ {𝐵}) ≼ 2o
18 domtr 8978 . . 3 ((({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) ∧ ({𝐴} ⊔ {𝐵}) ≼ 2o) → ({𝐴} ∪ {𝐵}) ≼ 2o)
195, 17, 18mp2an 692 . 2 ({𝐴} ∪ {𝐵}) ≼ 2o
201, 19eqbrtri 5128 1 {𝐴, 𝐵} ≼ 2o
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  cun 3912  {csn 4589  {cpr 4591   class class class wbr 5107  Oncon0 6332  1oc1o 8427  2oc2o 8428  cen 8915  cdom 8916  cdju 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-dju 9854
This theorem is referenced by:  tr3dom  43517
  Copyright terms: Public domain W3C validator