Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2dom | Structured version Visualization version GIF version |
Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.) |
Ref | Expression |
---|---|
pr2dom | ⊢ {𝐴, 𝐵} ≼ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4564 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | snex 5354 | . . . 4 ⊢ {𝐴} ∈ V | |
3 | snex 5354 | . . . 4 ⊢ {𝐵} ∈ V | |
4 | undjudom 9923 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵})) | |
5 | 2, 3, 4 | mp2an 689 | . . 3 ⊢ ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) |
6 | sn1dom 41133 | . . . . . 6 ⊢ {𝐴} ≼ 1o | |
7 | djudom1 9938 | . . . . . 6 ⊢ (({𝐴} ≼ 1o ∧ {𝐵} ∈ V) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵})) | |
8 | 6, 3, 7 | mp2an 689 | . . . . 5 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) |
9 | sn1dom 41133 | . . . . . 6 ⊢ {𝐵} ≼ 1o | |
10 | 1on 8309 | . . . . . 6 ⊢ 1o ∈ On | |
11 | djudom2 9939 | . . . . . 6 ⊢ (({𝐵} ≼ 1o ∧ 1o ∈ On) → (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
12 | 9, 10, 11 | mp2an 689 | . . . . 5 ⊢ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
13 | domtr 8793 | . . . . 5 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) ∧ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
14 | 8, 12, 13 | mp2an 689 | . . . 4 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
15 | dju1p1e2 9929 | . . . 4 ⊢ (1o ⊔ 1o) ≈ 2o | |
16 | domentr 8799 | . . . 4 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → ({𝐴} ⊔ {𝐵}) ≼ 2o) | |
17 | 14, 15, 16 | mp2an 689 | . . 3 ⊢ ({𝐴} ⊔ {𝐵}) ≼ 2o |
18 | domtr 8793 | . . 3 ⊢ ((({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) ∧ ({𝐴} ⊔ {𝐵}) ≼ 2o) → ({𝐴} ∪ {𝐵}) ≼ 2o) | |
19 | 5, 17, 18 | mp2an 689 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ≼ 2o |
20 | 1, 19 | eqbrtri 5095 | 1 ⊢ {𝐴, 𝐵} ≼ 2o |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {csn 4561 {cpr 4563 class class class wbr 5074 Oncon0 6266 1oc1o 8290 2oc2o 8291 ≈ cen 8730 ≼ cdom 8731 ⊔ cdju 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 |
This theorem is referenced by: tr3dom 41135 |
Copyright terms: Public domain | W3C validator |