| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2dom | Structured version Visualization version GIF version | ||
| Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.) |
| Ref | Expression |
|---|---|
| pr2dom | ⊢ {𝐴, 𝐵} ≼ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4580 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | snex 5378 | . . . 4 ⊢ {𝐴} ∈ V | |
| 3 | snex 5378 | . . . 4 ⊢ {𝐵} ∈ V | |
| 4 | undjudom 10070 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵})) | |
| 5 | 2, 3, 4 | mp2an 692 | . . 3 ⊢ ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) |
| 6 | sn1dom 43683 | . . . . . 6 ⊢ {𝐴} ≼ 1o | |
| 7 | djudom1 10085 | . . . . . 6 ⊢ (({𝐴} ≼ 1o ∧ {𝐵} ∈ V) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵})) | |
| 8 | 6, 3, 7 | mp2an 692 | . . . . 5 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) |
| 9 | sn1dom 43683 | . . . . . 6 ⊢ {𝐵} ≼ 1o | |
| 10 | 1on 8406 | . . . . . 6 ⊢ 1o ∈ On | |
| 11 | djudom2 10086 | . . . . . 6 ⊢ (({𝐵} ≼ 1o ∧ 1o ∈ On) → (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
| 13 | domtr 8940 | . . . . 5 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) ∧ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
| 14 | 8, 12, 13 | mp2an 692 | . . . 4 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
| 15 | dju1p1e2 10076 | . . . 4 ⊢ (1o ⊔ 1o) ≈ 2o | |
| 16 | domentr 8946 | . . . 4 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → ({𝐴} ⊔ {𝐵}) ≼ 2o) | |
| 17 | 14, 15, 16 | mp2an 692 | . . 3 ⊢ ({𝐴} ⊔ {𝐵}) ≼ 2o |
| 18 | domtr 8940 | . . 3 ⊢ ((({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) ∧ ({𝐴} ⊔ {𝐵}) ≼ 2o) → ({𝐴} ∪ {𝐵}) ≼ 2o) | |
| 19 | 5, 17, 18 | mp2an 692 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ≼ 2o |
| 20 | 1, 19 | eqbrtri 5116 | 1 ⊢ {𝐴, 𝐵} ≼ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 {csn 4577 {cpr 4579 class class class wbr 5095 Oncon0 6314 1oc1o 8387 2oc2o 8388 ≈ cen 8876 ≼ cdom 8877 ⊔ cdju 9802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-1st 7930 df-2nd 7931 df-1o 8394 df-2o 8395 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-dju 9805 |
| This theorem is referenced by: tr3dom 43685 |
| Copyright terms: Public domain | W3C validator |