Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr2dom Structured version   Visualization version   GIF version

Theorem pr2dom 43560
Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.)
Assertion
Ref Expression
pr2dom {𝐴, 𝐵} ≼ 2o

Proof of Theorem pr2dom
StepHypRef Expression
1 df-pr 4574 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 snex 5369 . . . 4 {𝐴} ∈ V
3 snex 5369 . . . 4 {𝐵} ∈ V
4 undjudom 10054 . . . 4 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}))
52, 3, 4mp2an 692 . . 3 ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵})
6 sn1dom 43559 . . . . . 6 {𝐴} ≼ 1o
7 djudom1 10069 . . . . . 6 (({𝐴} ≼ 1o ∧ {𝐵} ∈ V) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}))
86, 3, 7mp2an 692 . . . . 5 ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵})
9 sn1dom 43559 . . . . . 6 {𝐵} ≼ 1o
10 1on 8392 . . . . . 6 1o ∈ On
11 djudom2 10070 . . . . . 6 (({𝐵} ≼ 1o ∧ 1o ∈ On) → (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o))
129, 10, 11mp2an 692 . . . . 5 (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)
13 domtr 8924 . . . . 5 ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) ∧ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o))
148, 12, 13mp2an 692 . . . 4 ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o)
15 dju1p1e2 10060 . . . 4 (1o ⊔ 1o) ≈ 2o
16 domentr 8930 . . . 4 ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → ({𝐴} ⊔ {𝐵}) ≼ 2o)
1714, 15, 16mp2an 692 . . 3 ({𝐴} ⊔ {𝐵}) ≼ 2o
18 domtr 8924 . . 3 ((({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) ∧ ({𝐴} ⊔ {𝐵}) ≼ 2o) → ({𝐴} ∪ {𝐵}) ≼ 2o)
195, 17, 18mp2an 692 . 2 ({𝐴} ∪ {𝐵}) ≼ 2o
201, 19eqbrtri 5107 1 {𝐴, 𝐵} ≼ 2o
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  cun 3895  {csn 4571  {cpr 4573   class class class wbr 5086  Oncon0 6301  1oc1o 8373  2oc2o 8374  cen 8861  cdom 8862  cdju 9786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-1st 7916  df-2nd 7917  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-dju 9789
This theorem is referenced by:  tr3dom  43561
  Copyright terms: Public domain W3C validator