Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2dom | Structured version Visualization version GIF version |
Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.) |
Ref | Expression |
---|---|
pr2dom | ⊢ {𝐴, 𝐵} ≼ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4528 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | snex 5304 | . . . 4 ⊢ {𝐴} ∈ V | |
3 | snex 5304 | . . . 4 ⊢ {𝐵} ∈ V | |
4 | undjudom 9640 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵})) | |
5 | 2, 3, 4 | mp2an 691 | . . 3 ⊢ ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) |
6 | sn1dom 40652 | . . . . . 6 ⊢ {𝐴} ≼ 1o | |
7 | djudom1 9655 | . . . . . 6 ⊢ (({𝐴} ≼ 1o ∧ {𝐵} ∈ V) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵})) | |
8 | 6, 3, 7 | mp2an 691 | . . . . 5 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) |
9 | sn1dom 40652 | . . . . . 6 ⊢ {𝐵} ≼ 1o | |
10 | 1on 8125 | . . . . . 6 ⊢ 1o ∈ On | |
11 | djudom2 9656 | . . . . . 6 ⊢ (({𝐵} ≼ 1o ∧ 1o ∈ On) → (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
12 | 9, 10, 11 | mp2an 691 | . . . . 5 ⊢ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
13 | domtr 8593 | . . . . 5 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) ∧ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
14 | 8, 12, 13 | mp2an 691 | . . . 4 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
15 | dju1p1e2 9646 | . . . 4 ⊢ (1o ⊔ 1o) ≈ 2o | |
16 | domentr 8599 | . . . 4 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → ({𝐴} ⊔ {𝐵}) ≼ 2o) | |
17 | 14, 15, 16 | mp2an 691 | . . 3 ⊢ ({𝐴} ⊔ {𝐵}) ≼ 2o |
18 | domtr 8593 | . . 3 ⊢ ((({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) ∧ ({𝐴} ⊔ {𝐵}) ≼ 2o) → ({𝐴} ∪ {𝐵}) ≼ 2o) | |
19 | 5, 17, 18 | mp2an 691 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ≼ 2o |
20 | 1, 19 | eqbrtri 5057 | 1 ⊢ {𝐴, 𝐵} ≼ 2o |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 ∪ cun 3858 {csn 4525 {cpr 4527 class class class wbr 5036 Oncon0 6174 1oc1o 8111 2oc2o 8112 ≈ cen 8537 ≼ cdom 8538 ⊔ cdju 9373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-om 7586 df-1st 7699 df-2nd 7700 df-1o 8118 df-2o 8119 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-dju 9376 |
This theorem is referenced by: tr3dom 40654 |
Copyright terms: Public domain | W3C validator |