| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2dom | Structured version Visualization version GIF version | ||
| Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.) |
| Ref | Expression |
|---|---|
| pr2dom | ⊢ {𝐴, 𝐵} ≼ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4582 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | snex 5378 | . . . 4 ⊢ {𝐴} ∈ V | |
| 3 | snex 5378 | . . . 4 ⊢ {𝐵} ∈ V | |
| 4 | undjudom 10081 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵})) | |
| 5 | 2, 3, 4 | mp2an 692 | . . 3 ⊢ ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) |
| 6 | sn1dom 43519 | . . . . . 6 ⊢ {𝐴} ≼ 1o | |
| 7 | djudom1 10096 | . . . . . 6 ⊢ (({𝐴} ≼ 1o ∧ {𝐵} ∈ V) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵})) | |
| 8 | 6, 3, 7 | mp2an 692 | . . . . 5 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) |
| 9 | sn1dom 43519 | . . . . . 6 ⊢ {𝐵} ≼ 1o | |
| 10 | 1on 8407 | . . . . . 6 ⊢ 1o ∈ On | |
| 11 | djudom2 10097 | . . . . . 6 ⊢ (({𝐵} ≼ 1o ∧ 1o ∈ On) → (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
| 13 | domtr 8939 | . . . . 5 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) ∧ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
| 14 | 8, 12, 13 | mp2an 692 | . . . 4 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
| 15 | dju1p1e2 10087 | . . . 4 ⊢ (1o ⊔ 1o) ≈ 2o | |
| 16 | domentr 8945 | . . . 4 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → ({𝐴} ⊔ {𝐵}) ≼ 2o) | |
| 17 | 14, 15, 16 | mp2an 692 | . . 3 ⊢ ({𝐴} ⊔ {𝐵}) ≼ 2o |
| 18 | domtr 8939 | . . 3 ⊢ ((({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) ∧ ({𝐴} ⊔ {𝐵}) ≼ 2o) → ({𝐴} ∪ {𝐵}) ≼ 2o) | |
| 19 | 5, 17, 18 | mp2an 692 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ≼ 2o |
| 20 | 1, 19 | eqbrtri 5116 | 1 ⊢ {𝐴, 𝐵} ≼ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 {csn 4579 {cpr 4581 class class class wbr 5095 Oncon0 6311 1oc1o 8388 2oc2o 8389 ≈ cen 8876 ≼ cdom 8877 ⊔ cdju 9813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-1st 7931 df-2nd 7932 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-dju 9816 |
| This theorem is referenced by: tr3dom 43521 |
| Copyright terms: Public domain | W3C validator |