Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2dom | Structured version Visualization version GIF version |
Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.) |
Ref | Expression |
---|---|
pr2dom | ⊢ {𝐴, 𝐵} ≼ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4561 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | snex 5349 | . . . 4 ⊢ {𝐴} ∈ V | |
3 | snex 5349 | . . . 4 ⊢ {𝐵} ∈ V | |
4 | undjudom 9854 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵})) | |
5 | 2, 3, 4 | mp2an 688 | . . 3 ⊢ ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) |
6 | sn1dom 41031 | . . . . . 6 ⊢ {𝐴} ≼ 1o | |
7 | djudom1 9869 | . . . . . 6 ⊢ (({𝐴} ≼ 1o ∧ {𝐵} ∈ V) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵})) | |
8 | 6, 3, 7 | mp2an 688 | . . . . 5 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) |
9 | sn1dom 41031 | . . . . . 6 ⊢ {𝐵} ≼ 1o | |
10 | 1on 8274 | . . . . . 6 ⊢ 1o ∈ On | |
11 | djudom2 9870 | . . . . . 6 ⊢ (({𝐵} ≼ 1o ∧ 1o ∈ On) → (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
12 | 9, 10, 11 | mp2an 688 | . . . . 5 ⊢ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
13 | domtr 8748 | . . . . 5 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) ∧ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o)) | |
14 | 8, 12, 13 | mp2an 688 | . . . 4 ⊢ ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) |
15 | dju1p1e2 9860 | . . . 4 ⊢ (1o ⊔ 1o) ≈ 2o | |
16 | domentr 8754 | . . . 4 ⊢ ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → ({𝐴} ⊔ {𝐵}) ≼ 2o) | |
17 | 14, 15, 16 | mp2an 688 | . . 3 ⊢ ({𝐴} ⊔ {𝐵}) ≼ 2o |
18 | domtr 8748 | . . 3 ⊢ ((({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) ∧ ({𝐴} ⊔ {𝐵}) ≼ 2o) → ({𝐴} ∪ {𝐵}) ≼ 2o) | |
19 | 5, 17, 18 | mp2an 688 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ≼ 2o |
20 | 1, 19 | eqbrtri 5091 | 1 ⊢ {𝐴, 𝐵} ≼ 2o |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {csn 4558 {cpr 4560 class class class wbr 5070 Oncon0 6251 1oc1o 8260 2oc2o 8261 ≈ cen 8688 ≼ cdom 8689 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-dju 9590 |
This theorem is referenced by: tr3dom 41033 |
Copyright terms: Public domain | W3C validator |