Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr2dom Structured version   Visualization version   GIF version

Theorem pr2dom 42957
Description: An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.)
Assertion
Ref Expression
pr2dom {𝐴, 𝐵} ≼ 2o

Proof of Theorem pr2dom
StepHypRef Expression
1 df-pr 4632 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 snex 5433 . . . 4 {𝐴} ∈ V
3 snex 5433 . . . 4 {𝐵} ∈ V
4 undjudom 10191 . . . 4 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}))
52, 3, 4mp2an 691 . . 3 ({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵})
6 sn1dom 42956 . . . . . 6 {𝐴} ≼ 1o
7 djudom1 10206 . . . . . 6 (({𝐴} ≼ 1o ∧ {𝐵} ∈ V) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}))
86, 3, 7mp2an 691 . . . . 5 ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵})
9 sn1dom 42956 . . . . . 6 {𝐵} ≼ 1o
10 1on 8499 . . . . . 6 1o ∈ On
11 djudom2 10207 . . . . . 6 (({𝐵} ≼ 1o ∧ 1o ∈ On) → (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o))
129, 10, 11mp2an 691 . . . . 5 (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)
13 domtr 9028 . . . . 5 ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ {𝐵}) ∧ (1o ⊔ {𝐵}) ≼ (1o ⊔ 1o)) → ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o))
148, 12, 13mp2an 691 . . . 4 ({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o)
15 dju1p1e2 10197 . . . 4 (1o ⊔ 1o) ≈ 2o
16 domentr 9034 . . . 4 ((({𝐴} ⊔ {𝐵}) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → ({𝐴} ⊔ {𝐵}) ≼ 2o)
1714, 15, 16mp2an 691 . . 3 ({𝐴} ⊔ {𝐵}) ≼ 2o
18 domtr 9028 . . 3 ((({𝐴} ∪ {𝐵}) ≼ ({𝐴} ⊔ {𝐵}) ∧ ({𝐴} ⊔ {𝐵}) ≼ 2o) → ({𝐴} ∪ {𝐵}) ≼ 2o)
195, 17, 18mp2an 691 . 2 ({𝐴} ∪ {𝐵}) ≼ 2o
201, 19eqbrtri 5169 1 {𝐴, 𝐵} ≼ 2o
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  Vcvv 3471  cun 3945  {csn 4629  {cpr 4631   class class class wbr 5148  Oncon0 6369  1oc1o 8480  2oc2o 8481  cen 8961  cdom 8962  cdju 9922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-1st 7993  df-2nd 7994  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-dju 9925
This theorem is referenced by:  tr3dom  42958
  Copyright terms: Public domain W3C validator