![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitmulclb | Structured version Visualization version GIF version |
Description: Reversal of unitmulcl 20406 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
unitmulcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitmulcl.2 | ⊢ · = (.r‘𝑅) |
unitmulclb.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
unitmulclb | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ CRing) | |
2 | simp2 1137 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
3 | simp3 1138 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
4 | unitmulclb.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | eqid 2740 | . . . . . . 7 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
6 | unitmulcl.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
7 | 4, 5, 6 | dvdsrmul 20390 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(∥r‘𝑅)(𝑌 · 𝑋)) |
8 | 2, 3, 7 | syl2anc 583 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(∥r‘𝑅)(𝑌 · 𝑋)) |
9 | 4, 6 | crngcom 20278 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋)) |
10 | 8, 9 | breqtrrd 5194 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(∥r‘𝑅)(𝑋 · 𝑌)) |
11 | unitmulcl.1 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
12 | 11, 5 | dvdsunit 20405 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋(∥r‘𝑅)(𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
13 | 12 | 3expia 1121 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋(∥r‘𝑅)(𝑋 · 𝑌)) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑋 ∈ 𝑈)) |
14 | 1, 10, 13 | syl2anc 583 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑋 ∈ 𝑈)) |
15 | 4, 5, 6 | dvdsrmul 20390 | . . . . 5 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑌(∥r‘𝑅)(𝑋 · 𝑌)) |
16 | 3, 2, 15 | syl2anc 583 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌(∥r‘𝑅)(𝑋 · 𝑌)) |
17 | 11, 5 | dvdsunit 20405 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑌(∥r‘𝑅)(𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ∈ 𝑈) → 𝑌 ∈ 𝑈) |
18 | 17 | 3expia 1121 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑌(∥r‘𝑅)(𝑋 · 𝑌)) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
19 | 1, 16, 18 | syl2anc 583 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
20 | 14, 19 | jcad 512 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 → (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
21 | crngring 20272 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
22 | 21 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
23 | 11, 6 | unitmulcl 20406 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) |
24 | 23 | 3expib 1122 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈)) |
25 | 22, 24 | syl 17 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈)) |
26 | 20, 25 | impbid 212 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 Ringcrg 20260 CRingccrg 20261 ∥rcdsr 20380 Unitcui 20381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 |
This theorem is referenced by: dchrelbas3 27300 dvdsruasso 33378 unitprodclb 33382 unitpidl1 33417 mxidlirredi 33464 1arithidom 33530 1arithufdlem3 33539 |
Copyright terms: Public domain | W3C validator |