Step | Hyp | Ref
| Expression |
1 | | dvdsr.1 |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
2 | | dvdsr.2 |
. . . . . 6
⊢ ∥ =
(∥r‘𝑅) |
3 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
4 | 1, 2, 3 | dvdsr 19888 |
. . . . 5
⊢ (𝑌 ∥ 𝑍 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍)) |
5 | 1, 2, 3 | dvdsr 19888 |
. . . . 5
⊢ (𝑍 ∥ 𝑋 ↔ (𝑍 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) |
6 | 4, 5 | anbi12i 627 |
. . . 4
⊢ ((𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) ↔ ((𝑌 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍) ∧ (𝑍 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋))) |
7 | | an4 653 |
. . . 4
⊢ (((𝑌 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍) ∧ (𝑍 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) ↔ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋))) |
8 | 6, 7 | bitri 274 |
. . 3
⊢ ((𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) ↔ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋))) |
9 | | reeanv 3294 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐵 ((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) ↔ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) |
10 | | simplrl 774 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
11 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑅 ∈ Ring) |
12 | | simprr 770 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
13 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
14 | 1, 3 | ringcl 19800 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
15 | 11, 12, 13, 14 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
16 | 1, 2, 3 | dvdsrmul 19890 |
. . . . . . . . 9
⊢ ((𝑌 ∈ 𝐵 ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) → 𝑌 ∥ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌)) |
17 | 10, 15, 16 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑌 ∥ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌)) |
18 | 1, 3 | ringass 19803 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌) = (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌))) |
19 | 11, 12, 13, 10, 18 | syl13anc 1371 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌) = (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌))) |
20 | 17, 19 | breqtrd 5100 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑌 ∥ (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌))) |
21 | | oveq2 7283 |
. . . . . . . . 9
⊢ ((𝑦(.r‘𝑅)𝑌) = 𝑍 → (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌)) = (𝑥(.r‘𝑅)𝑍)) |
22 | | id 22 |
. . . . . . . . 9
⊢ ((𝑥(.r‘𝑅)𝑍) = 𝑋 → (𝑥(.r‘𝑅)𝑍) = 𝑋) |
23 | 21, 22 | sylan9eq 2798 |
. . . . . . . 8
⊢ (((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌)) = 𝑋) |
24 | 23 | breq2d 5086 |
. . . . . . 7
⊢ (((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → (𝑌 ∥ (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌)) ↔ 𝑌 ∥ 𝑋)) |
25 | 20, 24 | syl5ibcom 244 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → 𝑌 ∥ 𝑋)) |
26 | 25 | rexlimdvva 3223 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → 𝑌 ∥ 𝑋)) |
27 | 9, 26 | syl5bir 242 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋) → 𝑌 ∥ 𝑋)) |
28 | 27 | expimpd 454 |
. . 3
⊢ (𝑅 ∈ Ring → (((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) → 𝑌 ∥ 𝑋)) |
29 | 8, 28 | syl5bi 241 |
. 2
⊢ (𝑅 ∈ Ring → ((𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋)) |
30 | 29 | 3impib 1115 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋) |