MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrtr Structured version   Visualization version   GIF version

Theorem dvdsrtr 20081
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
Assertion
Ref Expression
dvdsrtr ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)

Proof of Theorem dvdsrtr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . 6 𝐵 = (Base‘𝑅)
2 dvdsr.2 . . . . . 6 = (∥r𝑅)
3 eqid 2736 . . . . . 6 (.r𝑅) = (.r𝑅)
41, 2, 3dvdsr 20075 . . . . 5 (𝑌 𝑍 ↔ (𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍))
51, 2, 3dvdsr 20075 . . . . 5 (𝑍 𝑋 ↔ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))
64, 5anbi12i 627 . . . 4 ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
7 an4 654 . . . 4 (((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
86, 7bitri 274 . . 3 ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
9 reeanv 3217 . . . . 5 (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) ↔ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))
10 simplrl 775 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌𝐵)
11 simpll 765 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑅 ∈ Ring)
12 simprr 771 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑥𝐵)
13 simprl 769 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑦𝐵)
141, 3ringcl 19981 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
1511, 12, 13, 14syl3anc 1371 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
161, 2, 3dvdsrmul 20077 . . . . . . . . 9 ((𝑌𝐵 ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐵) → 𝑌 ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌))
1710, 15, 16syl2anc 584 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌))
181, 3ringass 19984 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑌𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
1911, 12, 13, 10, 18syl13anc 1372 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
2017, 19breqtrd 5131 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
21 oveq2 7365 . . . . . . . . 9 ((𝑦(.r𝑅)𝑌) = 𝑍 → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = (𝑥(.r𝑅)𝑍))
22 id 22 . . . . . . . . 9 ((𝑥(.r𝑅)𝑍) = 𝑋 → (𝑥(.r𝑅)𝑍) = 𝑋)
2321, 22sylan9eq 2796 . . . . . . . 8 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = 𝑋)
2423breq2d 5117 . . . . . . 7 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) ↔ 𝑌 𝑋))
2520, 24syl5ibcom 244 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
2625rexlimdvva 3205 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
279, 26biimtrrid 242 . . . 4 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → ((∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
2827expimpd 454 . . 3 (𝑅 ∈ Ring → (((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) → 𝑌 𝑋))
298, 28biimtrid 241 . 2 (𝑅 ∈ Ring → ((𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋))
30293impib 1116 1 ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  .rcmulr 17134  Ringcrg 19964  rcdsr 20067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mgp 19897  df-ring 19966  df-dvdsr 20070
This theorem is referenced by:  dvdsunit  20092  unitmulcl  20093  unitnegcl  20110
  Copyright terms: Public domain W3C validator