MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrtr Structured version   Visualization version   GIF version

Theorem dvdsrtr 19137
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
Assertion
Ref Expression
dvdsrtr ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)

Proof of Theorem dvdsrtr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . 6 𝐵 = (Base‘𝑅)
2 dvdsr.2 . . . . . 6 = (∥r𝑅)
3 eqid 2771 . . . . . 6 (.r𝑅) = (.r𝑅)
41, 2, 3dvdsr 19131 . . . . 5 (𝑌 𝑍 ↔ (𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍))
51, 2, 3dvdsr 19131 . . . . 5 (𝑍 𝑋 ↔ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))
64, 5anbi12i 618 . . . 4 ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
7 an4 644 . . . 4 (((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
86, 7bitri 267 . . 3 ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
9 reeanv 3301 . . . . 5 (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) ↔ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))
10 simplrl 765 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌𝐵)
11 simpll 755 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑅 ∈ Ring)
12 simprr 761 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑥𝐵)
13 simprl 759 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑦𝐵)
141, 3ringcl 19046 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
1511, 12, 13, 14syl3anc 1352 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
161, 2, 3dvdsrmul 19133 . . . . . . . . 9 ((𝑌𝐵 ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐵) → 𝑌 ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌))
1710, 15, 16syl2anc 576 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌))
181, 3ringass 19049 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑌𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
1911, 12, 13, 10, 18syl13anc 1353 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
2017, 19breqtrd 4951 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
21 oveq2 6982 . . . . . . . . 9 ((𝑦(.r𝑅)𝑌) = 𝑍 → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = (𝑥(.r𝑅)𝑍))
22 id 22 . . . . . . . . 9 ((𝑥(.r𝑅)𝑍) = 𝑋 → (𝑥(.r𝑅)𝑍) = 𝑋)
2321, 22sylan9eq 2827 . . . . . . . 8 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = 𝑋)
2423breq2d 4937 . . . . . . 7 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) ↔ 𝑌 𝑋))
2520, 24syl5ibcom 237 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
2625rexlimdvva 3232 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
279, 26syl5bir 235 . . . 4 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → ((∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
2827expimpd 446 . . 3 (𝑅 ∈ Ring → (((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) → 𝑌 𝑋))
298, 28syl5bi 234 . 2 (𝑅 ∈ Ring → ((𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋))
30293impib 1097 1 ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wrex 3082   class class class wbr 4925  cfv 6185  (class class class)co 6974  Basecbs 16337  .rcmulr 16420  Ringcrg 19032  rcdsr 19123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-plusg 16432  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mgp 18975  df-ring 19034  df-dvdsr 19126
This theorem is referenced by:  dvdsunit  19148  unitmulcl  19149  unitnegcl  19166
  Copyright terms: Public domain W3C validator