MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrtr Structured version   Visualization version   GIF version

Theorem dvdsrtr 20095
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
Assertion
Ref Expression
dvdsrtr ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)

Proof of Theorem dvdsrtr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . 6 𝐵 = (Base‘𝑅)
2 dvdsr.2 . . . . . 6 = (∥r𝑅)
3 eqid 2731 . . . . . 6 (.r𝑅) = (.r𝑅)
41, 2, 3dvdsr 20089 . . . . 5 (𝑌 𝑍 ↔ (𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍))
51, 2, 3dvdsr 20089 . . . . 5 (𝑍 𝑋 ↔ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))
64, 5anbi12i 627 . . . 4 ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
7 an4 654 . . . 4 (((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
86, 7bitri 274 . . 3 ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
9 reeanv 3215 . . . . 5 (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) ↔ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))
10 simplrl 775 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌𝐵)
11 simpll 765 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑅 ∈ Ring)
12 simprr 771 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑥𝐵)
13 simprl 769 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑦𝐵)
141, 3ringcl 19995 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
1511, 12, 13, 14syl3anc 1371 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
161, 2, 3dvdsrmul 20091 . . . . . . . . 9 ((𝑌𝐵 ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐵) → 𝑌 ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌))
1710, 15, 16syl2anc 584 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌))
181, 3ringass 19998 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑌𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
1911, 12, 13, 10, 18syl13anc 1372 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
2017, 19breqtrd 5136 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
21 oveq2 7370 . . . . . . . . 9 ((𝑦(.r𝑅)𝑌) = 𝑍 → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = (𝑥(.r𝑅)𝑍))
22 id 22 . . . . . . . . 9 ((𝑥(.r𝑅)𝑍) = 𝑋 → (𝑥(.r𝑅)𝑍) = 𝑋)
2321, 22sylan9eq 2791 . . . . . . . 8 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = 𝑋)
2423breq2d 5122 . . . . . . 7 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) ↔ 𝑌 𝑋))
2520, 24syl5ibcom 244 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
2625rexlimdvva 3201 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
279, 26biimtrrid 242 . . . 4 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → ((∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
2827expimpd 454 . . 3 (𝑅 ∈ Ring → (((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) → 𝑌 𝑋))
298, 28biimtrid 241 . 2 (𝑅 ∈ Ring → ((𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋))
30293impib 1116 1 ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3069   class class class wbr 5110  cfv 6501  (class class class)co 7362  Basecbs 17094  .rcmulr 17148  Ringcrg 19978  rcdsr 20081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-plusg 17160  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-mgp 19911  df-ring 19980  df-dvdsr 20084
This theorem is referenced by:  dvdsunit  20106  unitmulcl  20107  unitnegcl  20124
  Copyright terms: Public domain W3C validator