Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsrid | Structured version Visualization version GIF version |
Description: An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
Ref | Expression |
---|---|
dvdsrid | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
2 | dvdsr.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2759 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 19379 | . . 3 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
5 | dvdsr.2 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
6 | eqid 2759 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
7 | 2, 5, 6 | dvdsrmul 19459 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝐵) → 𝑋 ∥ ((1r‘𝑅)(.r‘𝑅)𝑋)) |
8 | 1, 4, 7 | syl2anr 600 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ ((1r‘𝑅)(.r‘𝑅)𝑋)) |
9 | 2, 6, 3 | ringlidm 19382 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑋) = 𝑋) |
10 | 8, 9 | breqtrd 5056 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 class class class wbr 5030 ‘cfv 6333 (class class class)co 7148 Basecbs 16531 .rcmulr 16614 1rcur 19309 Ringcrg 19355 ∥rcdsr 19449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-2 11727 df-ndx 16534 df-slot 16535 df-base 16537 df-sets 16538 df-plusg 16626 df-0g 16763 df-mgm 17908 df-sgrp 17957 df-mnd 17968 df-mgp 19298 df-ur 19310 df-ring 19357 df-dvdsr 19452 |
This theorem is referenced by: 1unit 19469 |
Copyright terms: Public domain | W3C validator |