| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsrmul1 | Structured version Visualization version GIF version | ||
| Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
| dvdsrmul1.3 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvdsrmul1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | dvdsr.2 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
| 3 | dvdsrmul1.3 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 4 | 1, 2, 3 | dvdsr 20282 | . . 3 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌)) |
| 5 | simplll 774 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 6 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 7 | simpllr 775 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
| 8 | 1, 3 | ringcl 20170 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 9 | 5, 6, 7, 8 | syl3anc 1373 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 10 | 1, 2, 3 | dvdsrmul 20284 | . . . . . . . 8 ⊢ (((𝑋 · 𝑍) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∥ (𝑥 · (𝑋 · 𝑍))) |
| 11 | 9, 10 | sylancom 588 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∥ (𝑥 · (𝑋 · 𝑍))) |
| 12 | simpr 484 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 13 | 1, 3 | ringass 20173 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑥 · 𝑋) · 𝑍) = (𝑥 · (𝑋 · 𝑍))) |
| 14 | 5, 12, 6, 7, 13 | syl13anc 1374 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) · 𝑍) = (𝑥 · (𝑋 · 𝑍))) |
| 15 | 11, 14 | breqtrrd 5121 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∥ ((𝑥 · 𝑋) · 𝑍)) |
| 16 | oveq1 7359 | . . . . . . 7 ⊢ ((𝑥 · 𝑋) = 𝑌 → ((𝑥 · 𝑋) · 𝑍) = (𝑌 · 𝑍)) | |
| 17 | 16 | breq2d 5105 | . . . . . 6 ⊢ ((𝑥 · 𝑋) = 𝑌 → ((𝑋 · 𝑍) ∥ ((𝑥 · 𝑋) · 𝑍) ↔ (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 18 | 15, 17 | syl5ibcom 245 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) = 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 19 | 18 | rexlimdva 3134 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 20 | 19 | expimpd 453 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → ((𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 21 | 4, 20 | biimtrid 242 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → (𝑋 ∥ 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 22 | 21 | 3impia 1117 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 Ringcrg 20153 ∥rcdsr 20274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mgp 20061 df-ring 20155 df-dvdsr 20277 |
| This theorem is referenced by: unitmulcl 20300 |
| Copyright terms: Public domain | W3C validator |