| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrvald | Structured version Visualization version GIF version | ||
| Description: If a matrix multiplied with a given matrix (from the left as well as from the right) results in the identity matrix, this matrix is the inverse (matrix) of the given matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| Ref | Expression |
|---|---|
| invrvald.b | ⊢ 𝐵 = (Base‘𝑅) |
| invrvald.t | ⊢ · = (.r‘𝑅) |
| invrvald.o | ⊢ 1 = (1r‘𝑅) |
| invrvald.u | ⊢ 𝑈 = (Unit‘𝑅) |
| invrvald.i | ⊢ 𝐼 = (invr‘𝑅) |
| invrvald.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| invrvald.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invrvald.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| invrvald.xy | ⊢ (𝜑 → (𝑋 · 𝑌) = 1 ) |
| invrvald.yx | ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) |
| Ref | Expression |
|---|---|
| invrvald | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∧ (𝐼‘𝑋) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrvald.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | invrvald.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | invrvald.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 5 | invrvald.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 6 | 3, 4, 5 | dvdsrmul 20273 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(∥r‘𝑅)(𝑌 · 𝑋)) |
| 7 | 1, 2, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑋(∥r‘𝑅)(𝑌 · 𝑋)) |
| 8 | invrvald.yx | . . . 4 ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) | |
| 9 | 7, 8 | breqtrd 5133 | . . 3 ⊢ (𝜑 → 𝑋(∥r‘𝑅) 1 ) |
| 10 | eqid 2729 | . . . . . . 7 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 11 | 10, 3 | opprbas 20252 | . . . . . 6 ⊢ 𝐵 = (Base‘(oppr‘𝑅)) |
| 12 | eqid 2729 | . . . . . 6 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 13 | eqid 2729 | . . . . . 6 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 14 | 11, 12, 13 | dvdsrmul 20273 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(∥r‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋)) |
| 15 | 1, 2, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑋(∥r‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋)) |
| 16 | 3, 5, 10, 13 | opprmul 20249 | . . . . 5 ⊢ (𝑌(.r‘(oppr‘𝑅))𝑋) = (𝑋 · 𝑌) |
| 17 | invrvald.xy | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) = 1 ) | |
| 18 | 16, 17 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → (𝑌(.r‘(oppr‘𝑅))𝑋) = 1 ) |
| 19 | 15, 18 | breqtrd 5133 | . . 3 ⊢ (𝜑 → 𝑋(∥r‘(oppr‘𝑅)) 1 ) |
| 20 | invrvald.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 21 | invrvald.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 22 | 20, 21, 4, 10, 12 | isunit 20282 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅) 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 )) |
| 23 | 9, 19, 22 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 24 | invrvald.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 25 | eqid 2729 | . . . . . 6 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 26 | 20, 25, 21 | unitgrpid 20294 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 27 | 24, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 28 | 17, 27 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 29 | 20, 25 | unitgrp 20292 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
| 30 | 24, 29 | syl 17 | . . . 4 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
| 31 | 3, 4, 5 | dvdsrmul 20273 | . . . . . . 7 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑌(∥r‘𝑅)(𝑋 · 𝑌)) |
| 32 | 2, 1, 31 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑌(∥r‘𝑅)(𝑋 · 𝑌)) |
| 33 | 32, 17 | breqtrd 5133 | . . . . 5 ⊢ (𝜑 → 𝑌(∥r‘𝑅) 1 ) |
| 34 | 11, 12, 13 | dvdsrmul 20273 | . . . . . . 7 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑌(∥r‘(oppr‘𝑅))(𝑋(.r‘(oppr‘𝑅))𝑌)) |
| 35 | 2, 1, 34 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑌(∥r‘(oppr‘𝑅))(𝑋(.r‘(oppr‘𝑅))𝑌)) |
| 36 | 3, 5, 10, 13 | opprmul 20249 | . . . . . . 7 ⊢ (𝑋(.r‘(oppr‘𝑅))𝑌) = (𝑌 · 𝑋) |
| 37 | 36, 8 | eqtrid 2776 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘(oppr‘𝑅))𝑌) = 1 ) |
| 38 | 35, 37 | breqtrd 5133 | . . . . 5 ⊢ (𝜑 → 𝑌(∥r‘(oppr‘𝑅)) 1 ) |
| 39 | 20, 21, 4, 10, 12 | isunit 20282 | . . . . 5 ⊢ (𝑌 ∈ 𝑈 ↔ (𝑌(∥r‘𝑅) 1 ∧ 𝑌(∥r‘(oppr‘𝑅)) 1 )) |
| 40 | 33, 38, 39 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| 41 | 20, 25 | unitgrpbas 20291 | . . . . 5 ⊢ 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 42 | 20 | fvexi 6872 | . . . . . 6 ⊢ 𝑈 ∈ V |
| 43 | eqid 2729 | . . . . . . . 8 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 44 | 43, 5 | mgpplusg 20053 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 45 | 25, 44 | ressplusg 17254 | . . . . . 6 ⊢ (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 46 | 42, 45 | ax-mp 5 | . . . . 5 ⊢ · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 47 | eqid 2729 | . . . . 5 ⊢ (0g‘((mulGrp‘𝑅) ↾s 𝑈)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)) | |
| 48 | invrvald.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
| 49 | 20, 25, 48 | invrfval 20298 | . . . . 5 ⊢ 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 50 | 41, 46, 47, 49 | grpinvid1 18923 | . . . 4 ⊢ ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((𝐼‘𝑋) = 𝑌 ↔ (𝑋 · 𝑌) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 51 | 30, 23, 40, 50 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐼‘𝑋) = 𝑌 ↔ (𝑋 · 𝑌) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 52 | 28, 51 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐼‘𝑋) = 𝑌) |
| 53 | 23, 52 | jca 511 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∧ (𝐼‘𝑋) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 .rcmulr 17221 0gc0g 17402 Grpcgrp 18865 mulGrpcmgp 20049 1rcur 20090 Ringcrg 20142 opprcoppr 20245 ∥rcdsr 20263 Unitcui 20264 invrcinvr 20296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 |
| This theorem is referenced by: matinv 22564 matunit 22565 extdg1id 33661 |
| Copyright terms: Public domain | W3C validator |