Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsfnn0gsumfsffz Structured version   Visualization version   GIF version

Theorem fsfnn0gsumfsffz 19099
 Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
nn0gsumfz.b 𝐵 = (Base‘𝐺)
nn0gsumfz.0 0 = (0g𝐺)
nn0gsumfz.g (𝜑𝐺 ∈ CMnd)
nn0gsumfz.f (𝜑𝐹 ∈ (𝐵m0))
fsfnn0gsumfsffz.s (𝜑𝑆 ∈ ℕ0)
fsfnn0gsumfsffz.h 𝐻 = (𝐹 ↾ (0...𝑆))
Assertion
Ref Expression
fsfnn0gsumfsffz (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥, 0
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem fsfnn0gsumfsffz
StepHypRef Expression
1 fsfnn0gsumfsffz.h . . . 4 𝐻 = (𝐹 ↾ (0...𝑆))
21oveq2i 7156 . . 3 (𝐺 Σg 𝐻) = (𝐺 Σg (𝐹 ↾ (0...𝑆)))
3 nn0gsumfz.b . . . 4 𝐵 = (Base‘𝐺)
4 nn0gsumfz.0 . . . 4 0 = (0g𝐺)
5 nn0gsumfz.g . . . . 5 (𝜑𝐺 ∈ CMnd)
65adantr 484 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐺 ∈ CMnd)
7 nn0ex 11896 . . . . 5 0 ∈ V
87a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → ℕ0 ∈ V)
9 nn0gsumfz.f . . . . . 6 (𝜑𝐹 ∈ (𝐵m0))
10 elmapi 8418 . . . . . 6 (𝐹 ∈ (𝐵m0) → 𝐹:ℕ0𝐵)
119, 10syl 17 . . . . 5 (𝜑𝐹:ℕ0𝐵)
1211adantr 484 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹:ℕ0𝐵)
134fvexi 6672 . . . . . 6 0 ∈ V
1413a1i 11 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 0 ∈ V)
159adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 ∈ (𝐵m0))
16 fsfnn0gsumfsffz.s . . . . . 6 (𝜑𝑆 ∈ ℕ0)
1716adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝑆 ∈ ℕ0)
18 simpr 488 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
1914, 15, 17, 18suppssfz 13362 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 supp 0 ) ⊆ (0...𝑆))
20 elmapfun 8420 . . . . . . . 8 (𝐹 ∈ (𝐵m0) → Fun 𝐹)
219, 20syl 17 . . . . . . 7 (𝜑 → Fun 𝐹)
2213a1i 11 . . . . . . 7 (𝜑0 ∈ V)
239, 21, 223jca 1125 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐵m0) ∧ Fun 𝐹0 ∈ V))
24 fzfid 13341 . . . . . . 7 (𝜑 → (0...𝑆) ∈ Fin)
2524anim1i 617 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)))
26 suppssfifsupp 8839 . . . . . 6 (((𝐹 ∈ (𝐵m0) ∧ Fun 𝐹0 ∈ V) ∧ ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) → 𝐹 finSupp 0 )
2723, 25, 26syl2an2r 684 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → 𝐹 finSupp 0 )
2819, 27syldan 594 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 finSupp 0 )
293, 4, 6, 8, 12, 19, 28gsumres 19029 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg (𝐹 ↾ (0...𝑆))) = (𝐺 Σg 𝐹))
302, 29syl5req 2872 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))
3130ex 416 1 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3133  Vcvv 3480   ⊆ wss 3919   class class class wbr 5052   ↾ cres 5544  Fun wfun 6337  ⟶wf 6339  ‘cfv 6343  (class class class)co 7145   supp csupp 7820   ↑m cmap 8396  Fincfn 8499   finSupp cfsupp 8824  0cc0 10529   < clt 10667  ℕ0cn0 11890  ...cfz 12890  Basecbs 16479  0gc0g 16709   Σg cgsu 16710  CMndccmn 18902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-supp 7821  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-oi 8965  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11891  df-z 11975  df-uz 12237  df-fz 12891  df-fzo 13034  df-seq 13370  df-hash 13692  df-0g 16711  df-gsum 16712  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-cntz 18443  df-cmn 18904 This theorem is referenced by:  nn0gsumfz  19100  gsummptnn0fz  19102
 Copyright terms: Public domain W3C validator