| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsfnn0gsumfsffz | Structured version Visualization version GIF version | ||
| Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
| Ref | Expression |
|---|---|
| nn0gsumfz.b | ⊢ 𝐵 = (Base‘𝐺) |
| nn0gsumfz.0 | ⊢ 0 = (0g‘𝐺) |
| nn0gsumfz.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| nn0gsumfz.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) |
| fsfnn0gsumfsffz.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| fsfnn0gsumfsffz.h | ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) |
| Ref | Expression |
|---|---|
| fsfnn0gsumfsffz | ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsfnn0gsumfsffz.h | . . . 4 ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) | |
| 2 | 1 | oveq2i 7380 | . . 3 ⊢ (𝐺 Σg 𝐻) = (𝐺 Σg (𝐹 ↾ (0...𝑆))) |
| 3 | nn0gsumfz.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | nn0gsumfz.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 5 | nn0gsumfz.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐺 ∈ CMnd) |
| 7 | nn0ex 12424 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ℕ0 ∈ V) |
| 9 | nn0gsumfz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) | |
| 10 | elmapi 8799 | . . . . . 6 ⊢ (𝐹 ∈ (𝐵 ↑m ℕ0) → 𝐹:ℕ0⟶𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ0⟶𝐵) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹:ℕ0⟶𝐵) |
| 13 | 4 | fvexi 6854 | . . . . . 6 ⊢ 0 ∈ V |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 0 ∈ V) |
| 15 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 ∈ (𝐵 ↑m ℕ0)) |
| 16 | fsfnn0gsumfsffz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝑆 ∈ ℕ0) |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) | |
| 19 | 14, 15, 17, 18 | suppssfz 13935 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐹 supp 0 ) ⊆ (0...𝑆)) |
| 20 | elmapfun 8816 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐵 ↑m ℕ0) → Fun 𝐹) | |
| 21 | 9, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Fun 𝐹) |
| 22 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
| 23 | 9, 21, 22 | 3jca 1128 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V)) |
| 24 | fzfid 13914 | . . . . . . 7 ⊢ (𝜑 → (0...𝑆) ∈ Fin) | |
| 25 | 24 | anim1i 615 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) |
| 26 | suppssfifsupp 9307 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐵 ↑m ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V) ∧ ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) → 𝐹 finSupp 0 ) | |
| 27 | 23, 25, 26 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → 𝐹 finSupp 0 ) |
| 28 | 19, 27 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 finSupp 0 ) |
| 29 | 3, 4, 6, 8, 12, 19, 28 | gsumres 19827 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg (𝐹 ↾ (0...𝑆))) = (𝐺 Σg 𝐹)) |
| 30 | 2, 29 | eqtr2id 2777 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)) |
| 31 | 30 | ex 412 | 1 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 ↾ cres 5633 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 ↑m cmap 8776 Fincfn 8895 finSupp cfsupp 9288 0cc0 11044 < clt 11184 ℕ0cn0 12418 ...cfz 13444 Basecbs 17155 0gc0g 17378 Σg cgsu 17379 CMndccmn 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-0g 17380 df-gsum 17381 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-cntz 19231 df-cmn 19696 |
| This theorem is referenced by: nn0gsumfz 19898 gsummptnn0fz 19900 |
| Copyright terms: Public domain | W3C validator |