| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsfnn0gsumfsffz | Structured version Visualization version GIF version | ||
| Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
| Ref | Expression |
|---|---|
| nn0gsumfz.b | ⊢ 𝐵 = (Base‘𝐺) |
| nn0gsumfz.0 | ⊢ 0 = (0g‘𝐺) |
| nn0gsumfz.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| nn0gsumfz.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) |
| fsfnn0gsumfsffz.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| fsfnn0gsumfsffz.h | ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) |
| Ref | Expression |
|---|---|
| fsfnn0gsumfsffz | ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsfnn0gsumfsffz.h | . . . 4 ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) | |
| 2 | 1 | oveq2i 7411 | . . 3 ⊢ (𝐺 Σg 𝐻) = (𝐺 Σg (𝐹 ↾ (0...𝑆))) |
| 3 | nn0gsumfz.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | nn0gsumfz.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 5 | nn0gsumfz.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐺 ∈ CMnd) |
| 7 | nn0ex 12500 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ℕ0 ∈ V) |
| 9 | nn0gsumfz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) | |
| 10 | elmapi 8858 | . . . . . 6 ⊢ (𝐹 ∈ (𝐵 ↑m ℕ0) → 𝐹:ℕ0⟶𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ0⟶𝐵) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹:ℕ0⟶𝐵) |
| 13 | 4 | fvexi 6887 | . . . . . 6 ⊢ 0 ∈ V |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 0 ∈ V) |
| 15 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 ∈ (𝐵 ↑m ℕ0)) |
| 16 | fsfnn0gsumfsffz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝑆 ∈ ℕ0) |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) | |
| 19 | 14, 15, 17, 18 | suppssfz 14002 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐹 supp 0 ) ⊆ (0...𝑆)) |
| 20 | elmapfun 8875 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐵 ↑m ℕ0) → Fun 𝐹) | |
| 21 | 9, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Fun 𝐹) |
| 22 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
| 23 | 9, 21, 22 | 3jca 1128 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V)) |
| 24 | fzfid 13981 | . . . . . . 7 ⊢ (𝜑 → (0...𝑆) ∈ Fin) | |
| 25 | 24 | anim1i 615 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) |
| 26 | suppssfifsupp 9387 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐵 ↑m ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V) ∧ ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) → 𝐹 finSupp 0 ) | |
| 27 | 23, 25, 26 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → 𝐹 finSupp 0 ) |
| 28 | 19, 27 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 finSupp 0 ) |
| 29 | 3, 4, 6, 8, 12, 19, 28 | gsumres 19881 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg (𝐹 ↾ (0...𝑆))) = (𝐺 Σg 𝐹)) |
| 30 | 2, 29 | eqtr2id 2782 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)) |
| 31 | 30 | ex 412 | 1 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3457 ⊆ wss 3924 class class class wbr 5117 ↾ cres 5654 Fun wfun 6522 ⟶wf 6524 ‘cfv 6528 (class class class)co 7400 supp csupp 8154 ↑m cmap 8835 Fincfn 8954 finSupp cfsupp 9368 0cc0 11122 < clt 11262 ℕ0cn0 12494 ...cfz 13514 Basecbs 17215 0gc0g 17440 Σg cgsu 17441 CMndccmn 19748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-oi 9517 df-card 9946 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-n0 12495 df-z 12582 df-uz 12846 df-fz 13515 df-fzo 13662 df-seq 14010 df-hash 14339 df-0g 17442 df-gsum 17443 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-cntz 19287 df-cmn 19750 |
| This theorem is referenced by: nn0gsumfz 19952 gsummptnn0fz 19954 |
| Copyright terms: Public domain | W3C validator |