Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsfnn0gsumfsffz Structured version   Visualization version   GIF version

Theorem fsfnn0gsumfsffz 18769
 Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
nn0gsumfz.b 𝐵 = (Base‘𝐺)
nn0gsumfz.0 0 = (0g𝐺)
nn0gsumfz.g (𝜑𝐺 ∈ CMnd)
nn0gsumfz.f (𝜑𝐹 ∈ (𝐵𝑚0))
fsfnn0gsumfsffz.s (𝜑𝑆 ∈ ℕ0)
fsfnn0gsumfsffz.h 𝐻 = (𝐹 ↾ (0...𝑆))
Assertion
Ref Expression
fsfnn0gsumfsffz (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥, 0
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem fsfnn0gsumfsffz
StepHypRef Expression
1 fsfnn0gsumfsffz.h . . . 4 𝐻 = (𝐹 ↾ (0...𝑆))
21oveq2i 6935 . . 3 (𝐺 Σg 𝐻) = (𝐺 Σg (𝐹 ↾ (0...𝑆)))
3 nn0gsumfz.b . . . 4 𝐵 = (Base‘𝐺)
4 nn0gsumfz.0 . . . 4 0 = (0g𝐺)
5 nn0gsumfz.g . . . . 5 (𝜑𝐺 ∈ CMnd)
65adantr 474 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐺 ∈ CMnd)
7 nn0ex 11653 . . . . 5 0 ∈ V
87a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → ℕ0 ∈ V)
9 nn0gsumfz.f . . . . . 6 (𝜑𝐹 ∈ (𝐵𝑚0))
10 elmapi 8164 . . . . . 6 (𝐹 ∈ (𝐵𝑚0) → 𝐹:ℕ0𝐵)
119, 10syl 17 . . . . 5 (𝜑𝐹:ℕ0𝐵)
1211adantr 474 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹:ℕ0𝐵)
134fvexi 6462 . . . . . 6 0 ∈ V
1413a1i 11 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 0 ∈ V)
159adantr 474 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 ∈ (𝐵𝑚0))
16 fsfnn0gsumfsffz.s . . . . . 6 (𝜑𝑆 ∈ ℕ0)
1716adantr 474 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝑆 ∈ ℕ0)
18 simpr 479 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
1914, 15, 17, 18suppssfz 13116 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 supp 0 ) ⊆ (0...𝑆))
20 elmapfun 8166 . . . . . . . 8 (𝐹 ∈ (𝐵𝑚0) → Fun 𝐹)
219, 20syl 17 . . . . . . 7 (𝜑 → Fun 𝐹)
2213a1i 11 . . . . . . 7 (𝜑0 ∈ V)
239, 21, 223jca 1119 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐵𝑚0) ∧ Fun 𝐹0 ∈ V))
24 fzfid 13095 . . . . . . 7 (𝜑 → (0...𝑆) ∈ Fin)
2524anim1i 608 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)))
26 suppssfifsupp 8580 . . . . . 6 (((𝐹 ∈ (𝐵𝑚0) ∧ Fun 𝐹0 ∈ V) ∧ ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) → 𝐹 finSupp 0 )
2723, 25, 26syl2an2r 675 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → 𝐹 finSupp 0 )
2819, 27syldan 585 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 finSupp 0 )
293, 4, 6, 8, 12, 19, 28gsumres 18704 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg (𝐹 ↾ (0...𝑆))) = (𝐺 Σg 𝐹))
302, 29syl5req 2827 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))
3130ex 403 1 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107  ∀wral 3090  Vcvv 3398   ⊆ wss 3792   class class class wbr 4888   ↾ cres 5359  Fun wfun 6131  ⟶wf 6133  ‘cfv 6137  (class class class)co 6924   supp csupp 7578   ↑𝑚 cmap 8142  Fincfn 8243   finSupp cfsupp 8565  0cc0 10274   < clt 10413  ℕ0cn0 11646  ...cfz 12647  Basecbs 16259  0gc0g 16490   Σg cgsu 16491  CMndccmn 18583 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-n0 11647  df-z 11733  df-uz 11997  df-fz 12648  df-fzo 12789  df-seq 13124  df-hash 13440  df-0g 16492  df-gsum 16493  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-cntz 18137  df-cmn 18585 This theorem is referenced by:  nn0gsumfz  18770  gsummptnn0fz  18772  gsummptnn0fzOLD  18773
 Copyright terms: Public domain W3C validator