MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsfnn0gsumfsffz Structured version   Visualization version   GIF version

Theorem fsfnn0gsumfsffz 19964
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
nn0gsumfz.b 𝐵 = (Base‘𝐺)
nn0gsumfz.0 0 = (0g𝐺)
nn0gsumfz.g (𝜑𝐺 ∈ CMnd)
nn0gsumfz.f (𝜑𝐹 ∈ (𝐵m0))
fsfnn0gsumfsffz.s (𝜑𝑆 ∈ ℕ0)
fsfnn0gsumfsffz.h 𝐻 = (𝐹 ↾ (0...𝑆))
Assertion
Ref Expression
fsfnn0gsumfsffz (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥, 0
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem fsfnn0gsumfsffz
StepHypRef Expression
1 fsfnn0gsumfsffz.h . . . 4 𝐻 = (𝐹 ↾ (0...𝑆))
21oveq2i 7416 . . 3 (𝐺 Σg 𝐻) = (𝐺 Σg (𝐹 ↾ (0...𝑆)))
3 nn0gsumfz.b . . . 4 𝐵 = (Base‘𝐺)
4 nn0gsumfz.0 . . . 4 0 = (0g𝐺)
5 nn0gsumfz.g . . . . 5 (𝜑𝐺 ∈ CMnd)
65adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐺 ∈ CMnd)
7 nn0ex 12507 . . . . 5 0 ∈ V
87a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → ℕ0 ∈ V)
9 nn0gsumfz.f . . . . . 6 (𝜑𝐹 ∈ (𝐵m0))
10 elmapi 8863 . . . . . 6 (𝐹 ∈ (𝐵m0) → 𝐹:ℕ0𝐵)
119, 10syl 17 . . . . 5 (𝜑𝐹:ℕ0𝐵)
1211adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹:ℕ0𝐵)
134fvexi 6890 . . . . . 6 0 ∈ V
1413a1i 11 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 0 ∈ V)
159adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 ∈ (𝐵m0))
16 fsfnn0gsumfsffz.s . . . . . 6 (𝜑𝑆 ∈ ℕ0)
1716adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝑆 ∈ ℕ0)
18 simpr 484 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
1914, 15, 17, 18suppssfz 14012 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 supp 0 ) ⊆ (0...𝑆))
20 elmapfun 8880 . . . . . . . 8 (𝐹 ∈ (𝐵m0) → Fun 𝐹)
219, 20syl 17 . . . . . . 7 (𝜑 → Fun 𝐹)
2213a1i 11 . . . . . . 7 (𝜑0 ∈ V)
239, 21, 223jca 1128 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐵m0) ∧ Fun 𝐹0 ∈ V))
24 fzfid 13991 . . . . . . 7 (𝜑 → (0...𝑆) ∈ Fin)
2524anim1i 615 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)))
26 suppssfifsupp 9392 . . . . . 6 (((𝐹 ∈ (𝐵m0) ∧ Fun 𝐹0 ∈ V) ∧ ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) → 𝐹 finSupp 0 )
2723, 25, 26syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → 𝐹 finSupp 0 )
2819, 27syldan 591 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 finSupp 0 )
293, 4, 6, 8, 12, 19, 28gsumres 19894 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg (𝐹 ↾ (0...𝑆))) = (𝐺 Σg 𝐹))
302, 29eqtr2id 2783 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))
3130ex 412 1 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926   class class class wbr 5119  cres 5656  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405   supp csupp 8159  m cmap 8840  Fincfn 8959   finSupp cfsupp 9373  0cc0 11129   < clt 11269  0cn0 12501  ...cfz 13524  Basecbs 17228  0gc0g 17453   Σg cgsu 17454  CMndccmn 19761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-cntz 19300  df-cmn 19763
This theorem is referenced by:  nn0gsumfz  19965  gsummptnn0fz  19967
  Copyright terms: Public domain W3C validator