![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsfnn0gsumfsffz | Structured version Visualization version GIF version |
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
Ref | Expression |
---|---|
nn0gsumfz.b | ⊢ 𝐵 = (Base‘𝐺) |
nn0gsumfz.0 | ⊢ 0 = (0g‘𝐺) |
nn0gsumfz.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
nn0gsumfz.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) |
fsfnn0gsumfsffz.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
fsfnn0gsumfsffz.h | ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) |
Ref | Expression |
---|---|
fsfnn0gsumfsffz | ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsfnn0gsumfsffz.h | . . . 4 ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) | |
2 | 1 | oveq2i 7424 | . . 3 ⊢ (𝐺 Σg 𝐻) = (𝐺 Σg (𝐹 ↾ (0...𝑆))) |
3 | nn0gsumfz.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
4 | nn0gsumfz.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
5 | nn0gsumfz.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
6 | 5 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐺 ∈ CMnd) |
7 | nn0ex 12503 | . . . . 5 ⊢ ℕ0 ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ℕ0 ∈ V) |
9 | nn0gsumfz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) | |
10 | elmapi 8861 | . . . . . 6 ⊢ (𝐹 ∈ (𝐵 ↑m ℕ0) → 𝐹:ℕ0⟶𝐵) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ0⟶𝐵) |
12 | 11 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹:ℕ0⟶𝐵) |
13 | 4 | fvexi 6904 | . . . . . 6 ⊢ 0 ∈ V |
14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 0 ∈ V) |
15 | 9 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 ∈ (𝐵 ↑m ℕ0)) |
16 | fsfnn0gsumfsffz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
17 | 16 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝑆 ∈ ℕ0) |
18 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) | |
19 | 14, 15, 17, 18 | suppssfz 13986 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐹 supp 0 ) ⊆ (0...𝑆)) |
20 | elmapfun 8878 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐵 ↑m ℕ0) → Fun 𝐹) | |
21 | 9, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Fun 𝐹) |
22 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
23 | 9, 21, 22 | 3jca 1125 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V)) |
24 | fzfid 13965 | . . . . . . 7 ⊢ (𝜑 → (0...𝑆) ∈ Fin) | |
25 | 24 | anim1i 613 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) |
26 | suppssfifsupp 9398 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐵 ↑m ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V) ∧ ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) → 𝐹 finSupp 0 ) | |
27 | 23, 25, 26 | syl2an2r 683 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → 𝐹 finSupp 0 ) |
28 | 19, 27 | syldan 589 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 finSupp 0 ) |
29 | 3, 4, 6, 8, 12, 19, 28 | gsumres 19867 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg (𝐹 ↾ (0...𝑆))) = (𝐺 Σg 𝐹)) |
30 | 2, 29 | eqtr2id 2778 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)) |
31 | 30 | ex 411 | 1 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3051 Vcvv 3463 ⊆ wss 3941 class class class wbr 5144 ↾ cres 5675 Fun wfun 6537 ⟶wf 6539 ‘cfv 6543 (class class class)co 7413 supp csupp 8158 ↑m cmap 8838 Fincfn 8957 finSupp cfsupp 9380 0cc0 11133 < clt 11273 ℕ0cn0 12497 ...cfz 13511 Basecbs 17174 0gc0g 17415 Σg cgsu 17416 CMndccmn 19734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-0g 17417 df-gsum 17418 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-cntz 19267 df-cmn 19736 |
This theorem is referenced by: nn0gsumfz 19938 gsummptnn0fz 19940 |
Copyright terms: Public domain | W3C validator |