![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsfnn0gsumfsffz | Structured version Visualization version GIF version |
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
Ref | Expression |
---|---|
nn0gsumfz.b | ⊢ 𝐵 = (Base‘𝐺) |
nn0gsumfz.0 | ⊢ 0 = (0g‘𝐺) |
nn0gsumfz.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
nn0gsumfz.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 ℕ0)) |
fsfnn0gsumfsffz.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
fsfnn0gsumfsffz.h | ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) |
Ref | Expression |
---|---|
fsfnn0gsumfsffz | ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsfnn0gsumfsffz.h | . . . 4 ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) | |
2 | 1 | oveq2i 6935 | . . 3 ⊢ (𝐺 Σg 𝐻) = (𝐺 Σg (𝐹 ↾ (0...𝑆))) |
3 | nn0gsumfz.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
4 | nn0gsumfz.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
5 | nn0gsumfz.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
6 | 5 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐺 ∈ CMnd) |
7 | nn0ex 11653 | . . . . 5 ⊢ ℕ0 ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ℕ0 ∈ V) |
9 | nn0gsumfz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 ℕ0)) | |
10 | elmapi 8164 | . . . . . 6 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 ℕ0) → 𝐹:ℕ0⟶𝐵) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ0⟶𝐵) |
12 | 11 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹:ℕ0⟶𝐵) |
13 | 4 | fvexi 6462 | . . . . . 6 ⊢ 0 ∈ V |
14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 0 ∈ V) |
15 | 9 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 ∈ (𝐵 ↑𝑚 ℕ0)) |
16 | fsfnn0gsumfsffz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
17 | 16 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝑆 ∈ ℕ0) |
18 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) | |
19 | 14, 15, 17, 18 | suppssfz 13116 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐹 supp 0 ) ⊆ (0...𝑆)) |
20 | elmapfun 8166 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 ℕ0) → Fun 𝐹) | |
21 | 9, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Fun 𝐹) |
22 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
23 | 9, 21, 22 | 3jca 1119 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑𝑚 ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V)) |
24 | fzfid 13095 | . . . . . . 7 ⊢ (𝜑 → (0...𝑆) ∈ Fin) | |
25 | 24 | anim1i 608 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) |
26 | suppssfifsupp 8580 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐵 ↑𝑚 ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V) ∧ ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) → 𝐹 finSupp 0 ) | |
27 | 23, 25, 26 | syl2an2r 675 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → 𝐹 finSupp 0 ) |
28 | 19, 27 | syldan 585 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 finSupp 0 ) |
29 | 3, 4, 6, 8, 12, 19, 28 | gsumres 18704 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg (𝐹 ↾ (0...𝑆))) = (𝐺 Σg 𝐹)) |
30 | 2, 29 | syl5req 2827 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)) |
31 | 30 | ex 403 | 1 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 Vcvv 3398 ⊆ wss 3792 class class class wbr 4888 ↾ cres 5359 Fun wfun 6131 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 supp csupp 7578 ↑𝑚 cmap 8142 Fincfn 8243 finSupp cfsupp 8565 0cc0 10274 < clt 10413 ℕ0cn0 11646 ...cfz 12647 Basecbs 16259 0gc0g 16490 Σg cgsu 16491 CMndccmn 18583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-oi 8706 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-n0 11647 df-z 11733 df-uz 11997 df-fz 12648 df-fzo 12789 df-seq 13124 df-hash 13440 df-0g 16492 df-gsum 16493 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-cntz 18137 df-cmn 18585 |
This theorem is referenced by: nn0gsumfz 18770 gsummptnn0fz 18772 gsummptnn0fzOLD 18773 |
Copyright terms: Public domain | W3C validator |