MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsfnn0gsumfsffz Structured version   Visualization version   GIF version

Theorem fsfnn0gsumfsffz 19951
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
nn0gsumfz.b 𝐵 = (Base‘𝐺)
nn0gsumfz.0 0 = (0g𝐺)
nn0gsumfz.g (𝜑𝐺 ∈ CMnd)
nn0gsumfz.f (𝜑𝐹 ∈ (𝐵m0))
fsfnn0gsumfsffz.s (𝜑𝑆 ∈ ℕ0)
fsfnn0gsumfsffz.h 𝐻 = (𝐹 ↾ (0...𝑆))
Assertion
Ref Expression
fsfnn0gsumfsffz (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥, 0
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem fsfnn0gsumfsffz
StepHypRef Expression
1 fsfnn0gsumfsffz.h . . . 4 𝐻 = (𝐹 ↾ (0...𝑆))
21oveq2i 7411 . . 3 (𝐺 Σg 𝐻) = (𝐺 Σg (𝐹 ↾ (0...𝑆)))
3 nn0gsumfz.b . . . 4 𝐵 = (Base‘𝐺)
4 nn0gsumfz.0 . . . 4 0 = (0g𝐺)
5 nn0gsumfz.g . . . . 5 (𝜑𝐺 ∈ CMnd)
65adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐺 ∈ CMnd)
7 nn0ex 12500 . . . . 5 0 ∈ V
87a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → ℕ0 ∈ V)
9 nn0gsumfz.f . . . . . 6 (𝜑𝐹 ∈ (𝐵m0))
10 elmapi 8858 . . . . . 6 (𝐹 ∈ (𝐵m0) → 𝐹:ℕ0𝐵)
119, 10syl 17 . . . . 5 (𝜑𝐹:ℕ0𝐵)
1211adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹:ℕ0𝐵)
134fvexi 6887 . . . . . 6 0 ∈ V
1413a1i 11 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 0 ∈ V)
159adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 ∈ (𝐵m0))
16 fsfnn0gsumfsffz.s . . . . . 6 (𝜑𝑆 ∈ ℕ0)
1716adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝑆 ∈ ℕ0)
18 simpr 484 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
1914, 15, 17, 18suppssfz 14002 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 supp 0 ) ⊆ (0...𝑆))
20 elmapfun 8875 . . . . . . . 8 (𝐹 ∈ (𝐵m0) → Fun 𝐹)
219, 20syl 17 . . . . . . 7 (𝜑 → Fun 𝐹)
2213a1i 11 . . . . . . 7 (𝜑0 ∈ V)
239, 21, 223jca 1128 . . . . . 6 (𝜑 → (𝐹 ∈ (𝐵m0) ∧ Fun 𝐹0 ∈ V))
24 fzfid 13981 . . . . . . 7 (𝜑 → (0...𝑆) ∈ Fin)
2524anim1i 615 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)))
26 suppssfifsupp 9387 . . . . . 6 (((𝐹 ∈ (𝐵m0) ∧ Fun 𝐹0 ∈ V) ∧ ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) → 𝐹 finSupp 0 )
2723, 25, 26syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → 𝐹 finSupp 0 )
2819, 27syldan 591 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 finSupp 0 )
293, 4, 6, 8, 12, 19, 28gsumres 19881 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg (𝐹 ↾ (0...𝑆))) = (𝐺 Σg 𝐹))
302, 29eqtr2id 2782 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))
3130ex 412 1 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  Vcvv 3457  wss 3924   class class class wbr 5117  cres 5654  Fun wfun 6522  wf 6524  cfv 6528  (class class class)co 7400   supp csupp 8154  m cmap 8835  Fincfn 8954   finSupp cfsupp 9368  0cc0 11122   < clt 11262  0cn0 12494  ...cfz 13514  Basecbs 17215  0gc0g 17440   Σg cgsu 17441  CMndccmn 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-map 8837  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-n0 12495  df-z 12582  df-uz 12846  df-fz 13515  df-fzo 13662  df-seq 14010  df-hash 14339  df-0g 17442  df-gsum 17443  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-cntz 19287  df-cmn 19750
This theorem is referenced by:  nn0gsumfz  19952  gsummptnn0fz  19954
  Copyright terms: Public domain W3C validator