| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsfnn0gsumfsffz | Structured version Visualization version GIF version | ||
| Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
| Ref | Expression |
|---|---|
| nn0gsumfz.b | ⊢ 𝐵 = (Base‘𝐺) |
| nn0gsumfz.0 | ⊢ 0 = (0g‘𝐺) |
| nn0gsumfz.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| nn0gsumfz.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) |
| fsfnn0gsumfsffz.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| fsfnn0gsumfsffz.h | ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) |
| Ref | Expression |
|---|---|
| fsfnn0gsumfsffz | ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsfnn0gsumfsffz.h | . . . 4 ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) | |
| 2 | 1 | oveq2i 7352 | . . 3 ⊢ (𝐺 Σg 𝐻) = (𝐺 Σg (𝐹 ↾ (0...𝑆))) |
| 3 | nn0gsumfz.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | nn0gsumfz.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 5 | nn0gsumfz.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐺 ∈ CMnd) |
| 7 | nn0ex 12379 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ℕ0 ∈ V) |
| 9 | nn0gsumfz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) | |
| 10 | elmapi 8768 | . . . . . 6 ⊢ (𝐹 ∈ (𝐵 ↑m ℕ0) → 𝐹:ℕ0⟶𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ0⟶𝐵) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹:ℕ0⟶𝐵) |
| 13 | 4 | fvexi 6831 | . . . . . 6 ⊢ 0 ∈ V |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 0 ∈ V) |
| 15 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 ∈ (𝐵 ↑m ℕ0)) |
| 16 | fsfnn0gsumfsffz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝑆 ∈ ℕ0) |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) | |
| 19 | 14, 15, 17, 18 | suppssfz 13893 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐹 supp 0 ) ⊆ (0...𝑆)) |
| 20 | elmapfun 8785 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐵 ↑m ℕ0) → Fun 𝐹) | |
| 21 | 9, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Fun 𝐹) |
| 22 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
| 23 | 9, 21, 22 | 3jca 1128 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V)) |
| 24 | fzfid 13872 | . . . . . . 7 ⊢ (𝜑 → (0...𝑆) ∈ Fin) | |
| 25 | 24 | anim1i 615 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) |
| 26 | suppssfifsupp 9259 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐵 ↑m ℕ0) ∧ Fun 𝐹 ∧ 0 ∈ V) ∧ ((0...𝑆) ∈ Fin ∧ (𝐹 supp 0 ) ⊆ (0...𝑆))) → 𝐹 finSupp 0 ) | |
| 27 | 23, 25, 26 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 supp 0 ) ⊆ (0...𝑆)) → 𝐹 finSupp 0 ) |
| 28 | 19, 27 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → 𝐹 finSupp 0 ) |
| 29 | 3, 4, 6, 8, 12, 19, 28 | gsumres 19818 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg (𝐹 ↾ (0...𝑆))) = (𝐺 Σg 𝐹)) |
| 30 | 2, 29 | eqtr2id 2778 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)) |
| 31 | 30 | ex 412 | 1 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∀wral 3045 Vcvv 3434 ⊆ wss 3900 class class class wbr 5089 ↾ cres 5616 Fun wfun 6471 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 finSupp cfsupp 9240 0cc0 10998 < clt 11138 ℕ0cn0 12373 ...cfz 13399 Basecbs 17112 0gc0g 17335 Σg cgsu 17336 CMndccmn 19685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-0g 17337 df-gsum 17338 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-cntz 19222 df-cmn 19687 |
| This theorem is referenced by: nn0gsumfz 19889 gsummptnn0fz 19891 |
| Copyright terms: Public domain | W3C validator |