Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptbasid | Structured version Visualization version GIF version |
Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.) |
Ref | Expression |
---|---|
ptbas.1 | ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
Ref | Expression |
---|---|
ptbasid | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptbas.1 | . 2 ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | |
2 | simpl 483 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐴 ∈ 𝑉) | |
3 | 0fin 8954 | . . 3 ⊢ ∅ ∈ Fin | |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∅ ∈ Fin) |
5 | ffvelrn 6959 | . . . 4 ⊢ ((𝐹:𝐴⟶Top ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) | |
6 | 5 | adantll 711 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) |
7 | eqid 2738 | . . . 4 ⊢ ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘) | |
8 | 7 | topopn 22055 | . . 3 ⊢ ((𝐹‘𝑘) ∈ Top → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
9 | 6, 8 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
10 | eqidd 2739 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ (𝐴 ∖ ∅)) → ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘)) | |
11 | 1, 2, 4, 9, 10 | elptr2 22725 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ∖ cdif 3884 ∅c0 4256 ∪ cuni 4839 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 Xcixp 8685 Fincfn 8733 Topctop 22042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-ixp 8686 df-en 8734 df-fin 8737 df-top 22043 |
This theorem is referenced by: ptuni2 22727 ptbasfi 22732 |
Copyright terms: Public domain | W3C validator |