Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptbasid | Structured version Visualization version GIF version |
Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.) |
Ref | Expression |
---|---|
ptbas.1 | ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
Ref | Expression |
---|---|
ptbasid | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptbas.1 | . 2 ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | |
2 | simpl 483 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐴 ∈ 𝑉) | |
3 | 0fin 9014 | . . 3 ⊢ ∅ ∈ Fin | |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∅ ∈ Fin) |
5 | ffvelcdm 6998 | . . . 4 ⊢ ((𝐹:𝐴⟶Top ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) | |
6 | 5 | adantll 711 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) |
7 | eqid 2736 | . . . 4 ⊢ ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘) | |
8 | 7 | topopn 22135 | . . 3 ⊢ ((𝐹‘𝑘) ∈ Top → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
9 | 6, 8 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
10 | eqidd 2737 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ (𝐴 ∖ ∅)) → ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘)) | |
11 | 1, 2, 4, 9, 10 | elptr2 22805 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2713 ∀wral 3061 ∃wrex 3070 ∖ cdif 3893 ∅c0 4266 ∪ cuni 4849 Fn wfn 6460 ⟶wf 6461 ‘cfv 6465 Xcixp 8734 Fincfn 8782 Topctop 22122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-om 7759 df-ixp 8735 df-en 8783 df-fin 8786 df-top 22123 |
This theorem is referenced by: ptuni2 22807 ptbasfi 22812 |
Copyright terms: Public domain | W3C validator |