MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasid Structured version   Visualization version   GIF version

Theorem ptbasid 22806
Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasid ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝑔,𝑦,𝑘,𝑧,𝐴   𝑔,𝐹,𝑘,𝑥,𝑦,𝑧   𝑔,𝑉,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptbasid
StepHypRef Expression
1 ptbas.1 . 2 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2 simpl 483 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐴𝑉)
3 0fin 9014 . . 3 ∅ ∈ Fin
43a1i 11 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ∅ ∈ Fin)
5 ffvelcdm 6998 . . . 4 ((𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝐹𝑘) ∈ Top)
65adantll 711 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ Top)
7 eqid 2736 . . . 4 (𝐹𝑘) = (𝐹𝑘)
87topopn 22135 . . 3 ((𝐹𝑘) ∈ Top → (𝐹𝑘) ∈ (𝐹𝑘))
96, 8syl 17 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ (𝐹𝑘))
10 eqidd 2737 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘 ∈ (𝐴 ∖ ∅)) → (𝐹𝑘) = (𝐹𝑘))
111, 2, 4, 9, 10elptr2 22805 1 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wex 1780  wcel 2105  {cab 2713  wral 3061  wrex 3070  cdif 3893  c0 4266   cuni 4849   Fn wfn 6460  wf 6461  cfv 6465  Xcixp 8734  Fincfn 8782  Topctop 22122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-om 7759  df-ixp 8735  df-en 8783  df-fin 8786  df-top 22123
This theorem is referenced by:  ptuni2  22807  ptbasfi  22812
  Copyright terms: Public domain W3C validator