MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasid Structured version   Visualization version   GIF version

Theorem ptbasid 23468
Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasid ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝑔,𝑦,𝑘,𝑧,𝐴   𝑔,𝐹,𝑘,𝑥,𝑦,𝑧   𝑔,𝑉,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptbasid
StepHypRef Expression
1 ptbas.1 . 2 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2 simpl 482 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐴𝑉)
3 0fi 9019 . . 3 ∅ ∈ Fin
43a1i 11 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ∅ ∈ Fin)
5 ffvelcdm 7060 . . . 4 ((𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝐹𝑘) ∈ Top)
65adantll 714 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ Top)
7 eqid 2730 . . . 4 (𝐹𝑘) = (𝐹𝑘)
87topopn 22799 . . 3 ((𝐹𝑘) ∈ Top → (𝐹𝑘) ∈ (𝐹𝑘))
96, 8syl 17 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ (𝐹𝑘))
10 eqidd 2731 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘 ∈ (𝐴 ∖ ∅)) → (𝐹𝑘) = (𝐹𝑘))
111, 2, 4, 9, 10elptr2 23467 1 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3046  wrex 3055  cdif 3919  c0 4304   cuni 4879   Fn wfn 6514  wf 6515  cfv 6519  Xcixp 8874  Fincfn 8922  Topctop 22786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-ord 6343  df-on 6344  df-lim 6345  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-om 7851  df-ixp 8875  df-en 8923  df-fin 8926  df-top 22787
This theorem is referenced by:  ptuni2  23469  ptbasfi  23474
  Copyright terms: Public domain W3C validator