![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptbasid | Structured version Visualization version GIF version |
Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.) |
Ref | Expression |
---|---|
ptbas.1 | β’ π΅ = {π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))} |
Ref | Expression |
---|---|
ptbasid | β’ ((π΄ β π β§ πΉ:π΄βΆTop) β Xπ β π΄ βͺ (πΉβπ) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptbas.1 | . 2 β’ π΅ = {π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))} | |
2 | simpl 483 | . 2 β’ ((π΄ β π β§ πΉ:π΄βΆTop) β π΄ β π) | |
3 | 0fin 9173 | . . 3 β’ β β Fin | |
4 | 3 | a1i 11 | . 2 β’ ((π΄ β π β§ πΉ:π΄βΆTop) β β β Fin) |
5 | ffvelcdm 7083 | . . . 4 β’ ((πΉ:π΄βΆTop β§ π β π΄) β (πΉβπ) β Top) | |
6 | 5 | adantll 712 | . . 3 β’ (((π΄ β π β§ πΉ:π΄βΆTop) β§ π β π΄) β (πΉβπ) β Top) |
7 | eqid 2732 | . . . 4 β’ βͺ (πΉβπ) = βͺ (πΉβπ) | |
8 | 7 | topopn 22628 | . . 3 β’ ((πΉβπ) β Top β βͺ (πΉβπ) β (πΉβπ)) |
9 | 6, 8 | syl 17 | . 2 β’ (((π΄ β π β§ πΉ:π΄βΆTop) β§ π β π΄) β βͺ (πΉβπ) β (πΉβπ)) |
10 | eqidd 2733 | . 2 β’ (((π΄ β π β§ πΉ:π΄βΆTop) β§ π β (π΄ β β )) β βͺ (πΉβπ) = βͺ (πΉβπ)) | |
11 | 1, 2, 4, 9, 10 | elptr2 23298 | 1 β’ ((π΄ β π β§ πΉ:π΄βΆTop) β Xπ β π΄ βͺ (πΉβπ) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 βwex 1781 β wcel 2106 {cab 2709 βwral 3061 βwrex 3070 β cdif 3945 β c0 4322 βͺ cuni 4908 Fn wfn 6538 βΆwf 6539 βcfv 6543 Xcixp 8893 Fincfn 8941 Topctop 22615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7858 df-ixp 8894 df-en 8942 df-fin 8945 df-top 22616 |
This theorem is referenced by: ptuni2 23300 ptbasfi 23305 |
Copyright terms: Public domain | W3C validator |