| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptbasid | Structured version Visualization version GIF version | ||
| Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| ptbas.1 | ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
| Ref | Expression |
|---|---|
| ptbasid | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | . 2 ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | |
| 2 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐴 ∈ 𝑉) | |
| 3 | 0fi 8964 | . . 3 ⊢ ∅ ∈ Fin | |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∅ ∈ Fin) |
| 5 | ffvelcdm 7014 | . . . 4 ⊢ ((𝐹:𝐴⟶Top ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) | |
| 6 | 5 | adantll 714 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) |
| 7 | eqid 2731 | . . . 4 ⊢ ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘) | |
| 8 | 7 | topopn 22821 | . . 3 ⊢ ((𝐹‘𝑘) ∈ Top → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
| 10 | eqidd 2732 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ (𝐴 ∖ ∅)) → ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘)) | |
| 11 | 1, 2, 4, 9, 10 | elptr2 23489 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 ∖ cdif 3894 ∅c0 4280 ∪ cuni 4856 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 Xcixp 8821 Fincfn 8869 Topctop 22808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-ixp 8822 df-en 8870 df-fin 8873 df-top 22809 |
| This theorem is referenced by: ptuni2 23491 ptbasfi 23496 |
| Copyright terms: Public domain | W3C validator |