Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpnnen | Structured version Visualization version GIF version |
Description: The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
xpnnen | ⊢ (ℕ × ℕ) ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnenom 13578 | . . 3 ⊢ ℕ ≈ ω | |
2 | xpen 8832 | . . 3 ⊢ ((ℕ ≈ ω ∧ ℕ ≈ ω) → (ℕ × ℕ) ≈ (ω × ω)) | |
3 | 1, 1, 2 | mp2an 692 | . 2 ⊢ (ℕ × ℕ) ≈ (ω × ω) |
4 | xpomen 9654 | . . 3 ⊢ (ω × ω) ≈ ω | |
5 | 4, 1 | entr4i 8708 | . 2 ⊢ (ω × ω) ≈ ℕ |
6 | 3, 5 | entri 8705 | 1 ⊢ (ℕ × ℕ) ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5068 × cxp 5564 ωcom 7663 ≈ cen 8644 ℕcn 11855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-inf2 9281 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-oi 9151 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-n0 12116 df-z 12202 df-uz 12464 |
This theorem is referenced by: znnen 15798 qnnen 15799 rpnnen 15813 re2ndc 23722 ovoliunlem3 24425 opnmblALT 24524 mbfimaopnlem 24576 mblfinlem1 35578 pellexlem4 40386 pellexlem5 40387 nnf1oxpnn 42436 |
Copyright terms: Public domain | W3C validator |