| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odhash | Structured version Visualization version GIF version | ||
| Description: An element of zero order generates an infinite subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| odhash.x | ⊢ 𝑋 = (Base‘𝐺) |
| odhash.o | ⊢ 𝑂 = (od‘𝐺) |
| odhash.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| odhash | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 3 | odhash.o | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
| 4 | odhash.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 5 | 1, 2, 3, 4 | odf1o1 19486 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴})) |
| 6 | zex 12514 | . . . 4 ⊢ ℤ ∈ V | |
| 7 | 6 | f1oen 8921 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}) → ℤ ≈ (𝐾‘{𝐴})) |
| 8 | hasheni 14289 | . . 3 ⊢ (ℤ ≈ (𝐾‘{𝐴}) → (♯‘ℤ) = (♯‘(𝐾‘{𝐴}))) | |
| 9 | 5, 7, 8 | 3syl 18 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘ℤ) = (♯‘(𝐾‘{𝐴}))) |
| 10 | ominf 9181 | . . . 4 ⊢ ¬ ω ∈ Fin | |
| 11 | znnen 16156 | . . . . . 6 ⊢ ℤ ≈ ℕ | |
| 12 | nnenom 13921 | . . . . . 6 ⊢ ℕ ≈ ω | |
| 13 | 11, 12 | entri 8956 | . . . . 5 ⊢ ℤ ≈ ω |
| 14 | enfi 9128 | . . . . 5 ⊢ (ℤ ≈ ω → (ℤ ∈ Fin ↔ ω ∈ Fin)) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (ℤ ∈ Fin ↔ ω ∈ Fin) |
| 16 | 10, 15 | mtbir 323 | . . 3 ⊢ ¬ ℤ ∈ Fin |
| 17 | hashinf 14276 | . . 3 ⊢ ((ℤ ∈ V ∧ ¬ ℤ ∈ Fin) → (♯‘ℤ) = +∞) | |
| 18 | 6, 16, 17 | mp2an 692 | . 2 ⊢ (♯‘ℤ) = +∞ |
| 19 | 9, 18 | eqtr3di 2779 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 class class class wbr 5102 ↦ cmpt 5183 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ωcom 7822 ≈ cen 8892 Fincfn 8895 0cc0 11044 +∞cpnf 11181 ℕcn 12162 ℤcz 12505 ♯chash 14271 Basecbs 17155 mrClscmrc 17520 Grpcgrp 18847 .gcmg 18981 SubGrpcsubg 19034 odcod 19438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-od 19442 |
| This theorem is referenced by: odhash3 19490 |
| Copyright terms: Public domain | W3C validator |