| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odhash | Structured version Visualization version GIF version | ||
| Description: An element of zero order generates an infinite subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| odhash.x | ⊢ 𝑋 = (Base‘𝐺) |
| odhash.o | ⊢ 𝑂 = (od‘𝐺) |
| odhash.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| odhash | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | eqid 2734 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 3 | odhash.o | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
| 4 | odhash.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 5 | 1, 2, 3, 4 | odf1o1 19557 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴})) |
| 6 | zex 12604 | . . . 4 ⊢ ℤ ∈ V | |
| 7 | 6 | f1oen 8994 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥(.g‘𝐺)𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}) → ℤ ≈ (𝐾‘{𝐴})) |
| 8 | hasheni 14368 | . . 3 ⊢ (ℤ ≈ (𝐾‘{𝐴}) → (♯‘ℤ) = (♯‘(𝐾‘{𝐴}))) | |
| 9 | 5, 7, 8 | 3syl 18 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘ℤ) = (♯‘(𝐾‘{𝐴}))) |
| 10 | ominf 9275 | . . . 4 ⊢ ¬ ω ∈ Fin | |
| 11 | znnen 16229 | . . . . . 6 ⊢ ℤ ≈ ℕ | |
| 12 | nnenom 14002 | . . . . . 6 ⊢ ℕ ≈ ω | |
| 13 | 11, 12 | entri 9029 | . . . . 5 ⊢ ℤ ≈ ω |
| 14 | enfi 9208 | . . . . 5 ⊢ (ℤ ≈ ω → (ℤ ∈ Fin ↔ ω ∈ Fin)) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (ℤ ∈ Fin ↔ ω ∈ Fin) |
| 16 | 10, 15 | mtbir 323 | . . 3 ⊢ ¬ ℤ ∈ Fin |
| 17 | hashinf 14355 | . . 3 ⊢ ((ℤ ∈ V ∧ ¬ ℤ ∈ Fin) → (♯‘ℤ) = +∞) | |
| 18 | 6, 16, 17 | mp2an 692 | . 2 ⊢ (♯‘ℤ) = +∞ |
| 19 | 9, 18 | eqtr3di 2784 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {csn 4606 class class class wbr 5123 ↦ cmpt 5205 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7412 ωcom 7868 ≈ cen 8963 Fincfn 8966 0cc0 11136 +∞cpnf 11273 ℕcn 12247 ℤcz 12595 ♯chash 14350 Basecbs 17228 mrClscmrc 17596 Grpcgrp 18919 .gcmg 19053 SubGrpcsubg 19106 odcod 19509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-acn 9963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-z 12596 df-uz 12860 df-rp 13016 df-fz 13529 df-fl 13813 df-mod 13891 df-seq 14024 df-exp 14084 df-hash 14351 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-dvds 16272 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-0g 17456 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-submnd 18765 df-grp 18922 df-minusg 18923 df-sbg 18924 df-mulg 19054 df-subg 19109 df-od 19513 |
| This theorem is referenced by: odhash3 19561 |
| Copyright terms: Public domain | W3C validator |