MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odhash Structured version   Visualization version   GIF version

Theorem odhash 19486
Description: An element of zero order generates an infinite subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odhash ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞)

Proof of Theorem odhash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 odhash.x . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2731 . . . 4 (.g𝐺) = (.g𝐺)
3 odhash.o . . . 4 𝑂 = (od‘𝐺)
4 odhash.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
51, 2, 3, 4odf1o1 19484 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
6 zex 12477 . . . 4 ℤ ∈ V
76f1oen 8895 . . 3 ((𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}) → ℤ ≈ (𝐾‘{𝐴}))
8 hasheni 14255 . . 3 (ℤ ≈ (𝐾‘{𝐴}) → (♯‘ℤ) = (♯‘(𝐾‘{𝐴})))
95, 7, 83syl 18 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (♯‘ℤ) = (♯‘(𝐾‘{𝐴})))
10 ominf 9148 . . . 4 ¬ ω ∈ Fin
11 znnen 16121 . . . . . 6 ℤ ≈ ℕ
12 nnenom 13887 . . . . . 6 ℕ ≈ ω
1311, 12entri 8930 . . . . 5 ℤ ≈ ω
14 enfi 9096 . . . . 5 (ℤ ≈ ω → (ℤ ∈ Fin ↔ ω ∈ Fin))
1513, 14ax-mp 5 . . . 4 (ℤ ∈ Fin ↔ ω ∈ Fin)
1610, 15mtbir 323 . . 3 ¬ ℤ ∈ Fin
17 hashinf 14242 . . 3 ((ℤ ∈ V ∧ ¬ ℤ ∈ Fin) → (♯‘ℤ) = +∞)
186, 16, 17mp2an 692 . 2 (♯‘ℤ) = +∞
199, 18eqtr3di 2781 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573   class class class wbr 5089  cmpt 5170  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  ωcom 7796  cen 8866  Fincfn 8869  0cc0 11006  +∞cpnf 11143  cn 12125  cz 12468  chash 14237  Basecbs 17120  mrClscmrc 17485  Grpcgrp 18846  .gcmg 18980  SubGrpcsubg 19033  odcod 19436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-od 19440
This theorem is referenced by:  odhash3  19488
  Copyright terms: Public domain W3C validator