MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odhash Structured version   Visualization version   GIF version

Theorem odhash 19488
Description: An element of zero order generates an infinite subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odhash ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞)

Proof of Theorem odhash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 odhash.x . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2729 . . . 4 (.g𝐺) = (.g𝐺)
3 odhash.o . . . 4 𝑂 = (od‘𝐺)
4 odhash.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
51, 2, 3, 4odf1o1 19486 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
6 zex 12514 . . . 4 ℤ ∈ V
76f1oen 8921 . . 3 ((𝑥 ∈ ℤ ↦ (𝑥(.g𝐺)𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}) → ℤ ≈ (𝐾‘{𝐴}))
8 hasheni 14289 . . 3 (ℤ ≈ (𝐾‘{𝐴}) → (♯‘ℤ) = (♯‘(𝐾‘{𝐴})))
95, 7, 83syl 18 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (♯‘ℤ) = (♯‘(𝐾‘{𝐴})))
10 ominf 9181 . . . 4 ¬ ω ∈ Fin
11 znnen 16156 . . . . . 6 ℤ ≈ ℕ
12 nnenom 13921 . . . . . 6 ℕ ≈ ω
1311, 12entri 8956 . . . . 5 ℤ ≈ ω
14 enfi 9128 . . . . 5 (ℤ ≈ ω → (ℤ ∈ Fin ↔ ω ∈ Fin))
1513, 14ax-mp 5 . . . 4 (ℤ ∈ Fin ↔ ω ∈ Fin)
1610, 15mtbir 323 . . 3 ¬ ℤ ∈ Fin
17 hashinf 14276 . . 3 ((ℤ ∈ V ∧ ¬ ℤ ∈ Fin) → (♯‘ℤ) = +∞)
186, 16, 17mp2an 692 . 2 (♯‘ℤ) = +∞
199, 18eqtr3di 2779 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (♯‘(𝐾‘{𝐴})) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585   class class class wbr 5102  cmpt 5183  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  ωcom 7822  cen 8892  Fincfn 8895  0cc0 11044  +∞cpnf 11181  cn 12162  cz 12505  chash 14271  Basecbs 17155  mrClscmrc 17520  Grpcgrp 18847  .gcmg 18981  SubGrpcsubg 19034  odcod 19438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-od 19442
This theorem is referenced by:  odhash3  19490
  Copyright terms: Public domain W3C validator