| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > irrapx1 | Structured version Visualization version GIF version | ||
| Description: Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| Ref | Expression |
|---|---|
| irrapx1 | ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnnen 16122 | . . . 4 ⊢ ℚ ≈ ℕ | |
| 2 | nnenom 13887 | . . . 4 ⊢ ℕ ≈ ω | |
| 3 | 1, 2 | entri 8930 | . . 3 ⊢ ℚ ≈ ω |
| 4 | 3, 2 | pm3.2i 470 | . 2 ⊢ (ℚ ≈ ω ∧ ℕ ≈ ω) |
| 5 | ssrab2 4027 | . . . . . 6 ⊢ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ | |
| 6 | qssre 12857 | . . . . . 6 ⊢ ℚ ⊆ ℝ | |
| 7 | 5, 6 | sstri 3939 | . . . . 5 ⊢ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ) |
| 9 | eldifi 4078 | . . . . 5 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ+) | |
| 10 | 9 | rpred 12934 | . . . 4 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ) |
| 11 | eldifn 4079 | . . . . 5 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ ℚ) | |
| 12 | elrabi 3638 | . . . . 5 ⊢ (𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} → 𝐴 ∈ ℚ) | |
| 13 | 11, 12 | nsyl 140 | . . . 4 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))}) |
| 14 | irrapxlem6 42868 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏 − 𝐴)) < 𝑎) | |
| 15 | 9, 14 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ (ℝ+ ∖ ℚ) ∧ 𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏 − 𝐴)) < 𝑎) |
| 16 | 15 | ralrimiva 3124 | . . . 4 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏 − 𝐴)) < 𝑎) |
| 17 | rencldnfi 42862 | . . . 4 ⊢ ((({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ ∧ 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))}) ∧ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏 − 𝐴)) < 𝑎) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin) | |
| 18 | 8, 10, 13, 16, 17 | syl31anc 1375 | . . 3 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin) |
| 19 | 18, 5 | jctil 519 | . 2 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)) |
| 20 | ctbnfien 42859 | . 2 ⊢ (((ℚ ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) | |
| 21 | 4, 19, 20 | sylancr 587 | 1 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ∖ cdif 3894 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ωcom 7796 ≈ cen 8866 Fincfn 8869 ℝcr 11005 0cc0 11006 < clt 11146 − cmin 11344 -cneg 11345 ℕcn 12125 2c2 12180 ℚcq 12846 ℝ+crp 12890 ↑cexp 13968 abscabs 15141 denomcdenom 16645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-ico 13251 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-numer 16646 df-denom 16647 |
| This theorem is referenced by: pellexlem4 42873 |
| Copyright terms: Public domain | W3C validator |