| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > irrapx1 | Structured version Visualization version GIF version | ||
| Description: Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| Ref | Expression |
|---|---|
| irrapx1 | ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnnen 16232 | . . . 4 ⊢ ℚ ≈ ℕ | |
| 2 | nnenom 14003 | . . . 4 ⊢ ℕ ≈ ω | |
| 3 | 1, 2 | entri 9030 | . . 3 ⊢ ℚ ≈ ω |
| 4 | 3, 2 | pm3.2i 470 | . 2 ⊢ (ℚ ≈ ω ∧ ℕ ≈ ω) |
| 5 | ssrab2 4060 | . . . . . 6 ⊢ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ | |
| 6 | qssre 12983 | . . . . . 6 ⊢ ℚ ⊆ ℝ | |
| 7 | 5, 6 | sstri 3973 | . . . . 5 ⊢ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ) |
| 9 | eldifi 4111 | . . . . 5 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ+) | |
| 10 | 9 | rpred 13059 | . . . 4 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ) |
| 11 | eldifn 4112 | . . . . 5 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ ℚ) | |
| 12 | elrabi 3670 | . . . . 5 ⊢ (𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} → 𝐴 ∈ ℚ) | |
| 13 | 11, 12 | nsyl 140 | . . . 4 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))}) |
| 14 | irrapxlem6 42816 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏 − 𝐴)) < 𝑎) | |
| 15 | 9, 14 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ (ℝ+ ∖ ℚ) ∧ 𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏 − 𝐴)) < 𝑎) |
| 16 | 15 | ralrimiva 3133 | . . . 4 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏 − 𝐴)) < 𝑎) |
| 17 | rencldnfi 42810 | . . . 4 ⊢ ((({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ ∧ 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))}) ∧ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏 − 𝐴)) < 𝑎) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin) | |
| 18 | 8, 10, 13, 16, 17 | syl31anc 1374 | . . 3 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin) |
| 19 | 18, 5 | jctil 519 | . 2 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)) |
| 20 | ctbnfien 42807 | . 2 ⊢ (((ℚ ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) | |
| 21 | 4, 19, 20 | sylancr 587 | 1 ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 {crab 3419 ∖ cdif 3928 ⊆ wss 3931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ωcom 7869 ≈ cen 8964 Fincfn 8967 ℝcr 11136 0cc0 11137 < clt 11277 − cmin 11474 -cneg 11475 ℕcn 12248 2c2 12303 ℚcq 12972 ℝ+crp 13016 ↑cexp 14084 abscabs 15256 denomcdenom 16754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-omul 8493 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-acn 9964 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-ico 13375 df-fz 13530 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-dvds 16274 df-gcd 16515 df-numer 16755 df-denom 16756 |
| This theorem is referenced by: pellexlem4 42821 |
| Copyright terms: Public domain | W3C validator |