Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapx1 Structured version   Visualization version   GIF version

Theorem irrapx1 40170
 Description: Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
irrapx1 (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ)
Distinct variable group:   𝑦,𝐴

Proof of Theorem irrapx1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qnnen 15619 . . . 4 ℚ ≈ ℕ
2 nnenom 13402 . . . 4 ℕ ≈ ω
31, 2entri 8586 . . 3 ℚ ≈ ω
43, 2pm3.2i 474 . 2 (ℚ ≈ ω ∧ ℕ ≈ ω)
5 ssrab2 3986 . . . . . 6 {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ
6 qssre 12404 . . . . . 6 ℚ ⊆ ℝ
75, 6sstri 3903 . . . . 5 {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ
87a1i 11 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ)
9 eldifi 4034 . . . . 5 (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ+)
109rpred 12477 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ)
11 eldifn 4035 . . . . 5 (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ ℚ)
12 elrabi 3598 . . . . 5 (𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} → 𝐴 ∈ ℚ)
1311, 12nsyl 142 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))})
14 irrapxlem6 40169 . . . . . 6 ((𝐴 ∈ ℝ+𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎)
159, 14sylan 583 . . . . 5 ((𝐴 ∈ (ℝ+ ∖ ℚ) ∧ 𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎)
1615ralrimiva 3113 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → ∀𝑎 ∈ ℝ+𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎)
17 rencldnfi 40163 . . . 4 ((({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ ∧ 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))}) ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)
188, 10, 13, 16, 17syl31anc 1370 . . 3 (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)
1918, 5jctil 523 . 2 (𝐴 ∈ (ℝ+ ∖ ℚ) → ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin))
20 ctbnfien 40160 . 2 (((ℚ ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ)
214, 19, 20sylancr 590 1 (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071  {crab 3074   ∖ cdif 3857   ⊆ wss 3860   class class class wbr 5035  ‘cfv 6339  (class class class)co 7155  ωcom 7584   ≈ cen 8529  Fincfn 8532  ℝcr 10579  0cc0 10580   < clt 10718   − cmin 10913  -cneg 10914  ℕcn 11679  2c2 11734  ℚcq 12393  ℝ+crp 12435  ↑cexp 13484  abscabs 14646  denomcdenom 16134 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-oadd 8121  df-omul 8122  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-oi 9012  df-card 9406  df-acn 9409  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-xnn0 12012  df-z 12026  df-uz 12288  df-q 12394  df-rp 12436  df-ico 12790  df-fz 12945  df-fl 13216  df-mod 13292  df-seq 13424  df-exp 13485  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-dvds 15661  df-gcd 15899  df-numer 16135  df-denom 16136 This theorem is referenced by:  pellexlem4  40174
 Copyright terms: Public domain W3C validator