Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapx1 Structured version   Visualization version   GIF version

Theorem irrapx1 42784
Description: Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
irrapx1 (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ)
Distinct variable group:   𝑦,𝐴

Proof of Theorem irrapx1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qnnen 16261 . . . 4 ℚ ≈ ℕ
2 nnenom 14031 . . . 4 ℕ ≈ ω
31, 2entri 9068 . . 3 ℚ ≈ ω
43, 2pm3.2i 470 . 2 (ℚ ≈ ω ∧ ℕ ≈ ω)
5 ssrab2 4103 . . . . . 6 {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ
6 qssre 13024 . . . . . 6 ℚ ⊆ ℝ
75, 6sstri 4018 . . . . 5 {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ
87a1i 11 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ)
9 eldifi 4154 . . . . 5 (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ+)
109rpred 13099 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ)
11 eldifn 4155 . . . . 5 (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ ℚ)
12 elrabi 3703 . . . . 5 (𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} → 𝐴 ∈ ℚ)
1311, 12nsyl 140 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))})
14 irrapxlem6 42783 . . . . . 6 ((𝐴 ∈ ℝ+𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎)
159, 14sylan 579 . . . . 5 ((𝐴 ∈ (ℝ+ ∖ ℚ) ∧ 𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎)
1615ralrimiva 3152 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → ∀𝑎 ∈ ℝ+𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎)
17 rencldnfi 42777 . . . 4 ((({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ ∧ 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))}) ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)
188, 10, 13, 16, 17syl31anc 1373 . . 3 (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)
1918, 5jctil 519 . 2 (𝐴 ∈ (ℝ+ ∖ ℚ) → ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin))
20 ctbnfien 42774 . 2 (((ℚ ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ)
214, 19, 20sylancr 586 1 (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wral 3067  wrex 3076  {crab 3443  cdif 3973  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  ωcom 7903  cen 9000  Fincfn 9003  cr 11183  0cc0 11184   < clt 11324  cmin 11520  -cneg 11521  cn 12293  2c2 12348  cq 13013  +crp 13057  cexp 14112  abscabs 15283  denomcdenom 16781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ico 13413  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783
This theorem is referenced by:  pellexlem4  42788
  Copyright terms: Public domain W3C validator