Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem31 Structured version   Visualization version   GIF version

Theorem mapdpglem31 41748
Description: Lemma for mapdpg 41751. Baer p. 45 line 19: "...and we have consequently that y' = y'', as we claimed." (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpgem25.h1 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
mapdpgem25.i1 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
mapdpglem26.a 𝐴 = (Scalar‘𝑈)
mapdpglem26.b 𝐵 = (Base‘𝐴)
mapdpglem26.t · = ( ·𝑠𝐶)
mapdpglem26.o 𝑂 = (0g𝐴)
mapdpglem28.ve (𝜑𝑣𝐵)
mapdpglem28.u1 (𝜑 = (𝑢 · 𝑖))
mapdpglem28.u2 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
mapdpglem28.ue (𝜑𝑢𝐵)
Assertion
Ref Expression
mapdpglem31 (𝜑 = 𝑖)
Distinct variable groups:   ,𝑖,𝑢,𝑣   𝑢,𝐵,𝑣   𝑢,𝐶,𝑣   𝑢,𝑂,𝑣   𝑢, · ,𝑣   𝑣,𝐺   𝑣,𝑅
Allowed substitution hints:   𝜑(𝑣,𝑢,,𝑖)   𝐴(𝑣,𝑢,,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝑅(𝑢,,𝑖)   · (,𝑖)   𝑈(𝑣,𝑢,,𝑖)   𝐹(𝑣,𝑢,,𝑖)   𝐺(𝑢,,𝑖)   𝐻(𝑣,𝑢,,𝑖)   𝐽(𝑣,𝑢,,𝑖)   𝐾(𝑣,𝑢,,𝑖)   𝑀(𝑣,𝑢,,𝑖)   (𝑣,𝑢,,𝑖)   𝑁(𝑣,𝑢,,𝑖)   𝑂(,𝑖)   𝑉(𝑣,𝑢,,𝑖)   𝑊(𝑣,𝑢,,𝑖)   𝑋(𝑣,𝑢,,𝑖)   𝑌(𝑣,𝑢,,𝑖)   0 (𝑣,𝑢,,𝑖)

Proof of Theorem mapdpglem31
StepHypRef Expression
1 mapdpglem28.u1 . 2 (𝜑 = (𝑢 · 𝑖))
2 mapdpg.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdpg.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpglem26.a . . . . 5 𝐴 = (Scalar‘𝑈)
5 eqid 2731 . . . . 5 (1r𝐴) = (1r𝐴)
6 mapdpg.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 eqid 2731 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
8 eqid 2731 . . . . 5 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
9 mapdpg.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
102, 3, 4, 5, 6, 7, 8, 9lcd1 41654 . . . 4 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝐴))
1110oveq1d 7361 . . 3 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝑖) = ((1r𝐴) · 𝑖))
122, 6, 9lcdlmod 41637 . . . 4 (𝜑𝐶 ∈ LMod)
13 mapdpgem25.i1 . . . . 5 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
1413simpld 494 . . . 4 (𝜑𝑖𝐹)
15 mapdpg.f . . . . 5 𝐹 = (Base‘𝐶)
16 mapdpglem26.t . . . . 5 · = ( ·𝑠𝐶)
1715, 7, 16, 8lmodvs1 20824 . . . 4 ((𝐶 ∈ LMod ∧ 𝑖𝐹) → ((1r‘(Scalar‘𝐶)) · 𝑖) = 𝑖)
1812, 14, 17syl2anc 584 . . 3 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝑖) = 𝑖)
19 mapdpg.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
20 mapdpg.v . . . . . 6 𝑉 = (Base‘𝑈)
21 mapdpg.s . . . . . 6 = (-g𝑈)
22 mapdpg.z . . . . . 6 0 = (0g𝑈)
23 mapdpg.n . . . . . 6 𝑁 = (LSpan‘𝑈)
24 mapdpg.r . . . . . 6 𝑅 = (-g𝐶)
25 mapdpg.j . . . . . 6 𝐽 = (LSpan‘𝐶)
26 mapdpg.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
27 mapdpg.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
28 mapdpg.g . . . . . 6 (𝜑𝐺𝐹)
29 mapdpg.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 mapdpg.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
31 mapdpgem25.h1 . . . . . 6 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
32 mapdpglem26.b . . . . . 6 𝐵 = (Base‘𝐴)
33 mapdpglem26.o . . . . . 6 𝑂 = (0g𝐴)
34 mapdpglem28.ve . . . . . 6 (𝜑𝑣𝐵)
35 mapdpglem28.u2 . . . . . 6 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
36 mapdpglem28.ue . . . . . 6 (𝜑𝑢𝐵)
372, 19, 3, 20, 21, 22, 23, 6, 15, 24, 25, 9, 26, 27, 28, 29, 30, 31, 13, 4, 32, 16, 33, 34, 1, 35, 36mapdpglem30 41747 . . . . 5 (𝜑 → (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢))
38 eqtr2 2752 . . . . 5 ((𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢) → (1r𝐴) = 𝑢)
3937, 38syl 17 . . . 4 (𝜑 → (1r𝐴) = 𝑢)
4039oveq1d 7361 . . 3 (𝜑 → ((1r𝐴) · 𝑖) = (𝑢 · 𝑖))
4111, 18, 403eqtr3rd 2775 . 2 (𝜑 → (𝑢 · 𝑖) = 𝑖)
421, 41eqtrd 2766 1 (𝜑 = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3899  {csn 4576  cfv 6481  (class class class)co 7346  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  -gcsg 18848  1rcur 20100  LModclmod 20794  LSpanclspn 20905  HLchlt 39395  LHypclh 40029  DVecHcdvh 41123  LCDualclcd 41631  mapdcmpd 41669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-oppg 19259  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lsatoms 39021  df-lshyp 39022  df-lcv 39064  df-lfl 39103  df-lkr 39131  df-ldual 39169  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tgrp 40788  df-tendo 40800  df-edring 40802  df-dveca 41048  df-disoa 41074  df-dvech 41124  df-dib 41184  df-dic 41218  df-dih 41274  df-doch 41393  df-djh 41440  df-lcdual 41632  df-mapd 41670
This theorem is referenced by:  mapdpglem32  41750
  Copyright terms: Public domain W3C validator