![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem31 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 41090. Baer p. 45 line 19: "...and we have consequently that y' = y'', as we claimed." (Contributed by NM, 23-Mar-2015.) |
Ref | Expression |
---|---|
mapdpg.h | β’ π» = (LHypβπΎ) |
mapdpg.m | β’ π = ((mapdβπΎ)βπ) |
mapdpg.u | β’ π = ((DVecHβπΎ)βπ) |
mapdpg.v | β’ π = (Baseβπ) |
mapdpg.s | β’ β = (-gβπ) |
mapdpg.z | β’ 0 = (0gβπ) |
mapdpg.n | β’ π = (LSpanβπ) |
mapdpg.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdpg.f | β’ πΉ = (BaseβπΆ) |
mapdpg.r | β’ π = (-gβπΆ) |
mapdpg.j | β’ π½ = (LSpanβπΆ) |
mapdpg.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdpg.x | β’ (π β π β (π β { 0 })) |
mapdpg.y | β’ (π β π β (π β { 0 })) |
mapdpg.g | β’ (π β πΊ β πΉ) |
mapdpg.ne | β’ (π β (πβ{π}) β (πβ{π})) |
mapdpg.e | β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) |
mapdpgem25.h1 | β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) |
mapdpgem25.i1 | β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) |
mapdpglem26.a | β’ π΄ = (Scalarβπ) |
mapdpglem26.b | β’ π΅ = (Baseβπ΄) |
mapdpglem26.t | β’ Β· = ( Β·π βπΆ) |
mapdpglem26.o | β’ π = (0gβπ΄) |
mapdpglem28.ve | β’ (π β π£ β π΅) |
mapdpglem28.u1 | β’ (π β β = (π’ Β· π)) |
mapdpglem28.u2 | β’ (π β (πΊπ β) = (π£ Β· (πΊπ π))) |
mapdpglem28.ue | β’ (π β π’ β π΅) |
Ref | Expression |
---|---|
mapdpglem31 | β’ (π β β = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem28.u1 | . 2 β’ (π β β = (π’ Β· π)) | |
2 | mapdpg.h | . . . . 5 β’ π» = (LHypβπΎ) | |
3 | mapdpg.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
4 | mapdpglem26.a | . . . . 5 β’ π΄ = (Scalarβπ) | |
5 | eqid 2726 | . . . . 5 β’ (1rβπ΄) = (1rβπ΄) | |
6 | mapdpg.c | . . . . 5 β’ πΆ = ((LCDualβπΎ)βπ) | |
7 | eqid 2726 | . . . . 5 β’ (ScalarβπΆ) = (ScalarβπΆ) | |
8 | eqid 2726 | . . . . 5 β’ (1rβ(ScalarβπΆ)) = (1rβ(ScalarβπΆ)) | |
9 | mapdpg.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | lcd1 40993 | . . . 4 β’ (π β (1rβ(ScalarβπΆ)) = (1rβπ΄)) |
11 | 10 | oveq1d 7420 | . . 3 β’ (π β ((1rβ(ScalarβπΆ)) Β· π) = ((1rβπ΄) Β· π)) |
12 | 2, 6, 9 | lcdlmod 40976 | . . . 4 β’ (π β πΆ β LMod) |
13 | mapdpgem25.i1 | . . . . 5 β’ (π β (π β πΉ β§ ((πβ(πβ{π})) = (π½β{π}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ π)})))) | |
14 | 13 | simpld 494 | . . . 4 β’ (π β π β πΉ) |
15 | mapdpg.f | . . . . 5 β’ πΉ = (BaseβπΆ) | |
16 | mapdpglem26.t | . . . . 5 β’ Β· = ( Β·π βπΆ) | |
17 | 15, 7, 16, 8 | lmodvs1 20736 | . . . 4 β’ ((πΆ β LMod β§ π β πΉ) β ((1rβ(ScalarβπΆ)) Β· π) = π) |
18 | 12, 14, 17 | syl2anc 583 | . . 3 β’ (π β ((1rβ(ScalarβπΆ)) Β· π) = π) |
19 | mapdpg.m | . . . . . 6 β’ π = ((mapdβπΎ)βπ) | |
20 | mapdpg.v | . . . . . 6 β’ π = (Baseβπ) | |
21 | mapdpg.s | . . . . . 6 β’ β = (-gβπ) | |
22 | mapdpg.z | . . . . . 6 β’ 0 = (0gβπ) | |
23 | mapdpg.n | . . . . . 6 β’ π = (LSpanβπ) | |
24 | mapdpg.r | . . . . . 6 β’ π = (-gβπΆ) | |
25 | mapdpg.j | . . . . . 6 β’ π½ = (LSpanβπΆ) | |
26 | mapdpg.x | . . . . . 6 β’ (π β π β (π β { 0 })) | |
27 | mapdpg.y | . . . . . 6 β’ (π β π β (π β { 0 })) | |
28 | mapdpg.g | . . . . . 6 β’ (π β πΊ β πΉ) | |
29 | mapdpg.ne | . . . . . 6 β’ (π β (πβ{π}) β (πβ{π})) | |
30 | mapdpg.e | . . . . . 6 β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) | |
31 | mapdpgem25.h1 | . . . . . 6 β’ (π β (β β πΉ β§ ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΊπ β)})))) | |
32 | mapdpglem26.b | . . . . . 6 β’ π΅ = (Baseβπ΄) | |
33 | mapdpglem26.o | . . . . . 6 β’ π = (0gβπ΄) | |
34 | mapdpglem28.ve | . . . . . 6 β’ (π β π£ β π΅) | |
35 | mapdpglem28.u2 | . . . . . 6 β’ (π β (πΊπ β) = (π£ Β· (πΊπ π))) | |
36 | mapdpglem28.ue | . . . . . 6 β’ (π β π’ β π΅) | |
37 | 2, 19, 3, 20, 21, 22, 23, 6, 15, 24, 25, 9, 26, 27, 28, 29, 30, 31, 13, 4, 32, 16, 33, 34, 1, 35, 36 | mapdpglem30 41086 | . . . . 5 β’ (π β (π£ = (1rβπ΄) β§ π£ = π’)) |
38 | eqtr2 2750 | . . . . 5 β’ ((π£ = (1rβπ΄) β§ π£ = π’) β (1rβπ΄) = π’) | |
39 | 37, 38 | syl 17 | . . . 4 β’ (π β (1rβπ΄) = π’) |
40 | 39 | oveq1d 7420 | . . 3 β’ (π β ((1rβπ΄) Β· π) = (π’ Β· π)) |
41 | 11, 18, 40 | 3eqtr3rd 2775 | . 2 β’ (π β (π’ Β· π) = π) |
42 | 1, 41 | eqtrd 2766 | 1 β’ (π β β = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 β cdif 3940 {csn 4623 βcfv 6537 (class class class)co 7405 Basecbs 17153 Scalarcsca 17209 Β·π cvsca 17210 0gc0g 17394 -gcsg 18865 1rcur 20086 LModclmod 20706 LSpanclspn 20818 HLchlt 38733 LHypclh 39368 DVecHcdvh 40462 LCDualclcd 40970 mapdcmpd 41008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-riotaBAD 38336 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-undef 8259 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-0g 17396 df-mre 17539 df-mrc 17540 df-acs 17542 df-proset 18260 df-poset 18278 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-cntz 19233 df-oppg 19262 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-dvr 20303 df-drng 20589 df-lmod 20708 df-lss 20779 df-lsp 20819 df-lvec 20951 df-lsatoms 38359 df-lshyp 38360 df-lcv 38402 df-lfl 38441 df-lkr 38469 df-ldual 38507 df-oposet 38559 df-ol 38561 df-oml 38562 df-covers 38649 df-ats 38650 df-atl 38681 df-cvlat 38705 df-hlat 38734 df-llines 38882 df-lplanes 38883 df-lvols 38884 df-lines 38885 df-psubsp 38887 df-pmap 38888 df-padd 39180 df-lhyp 39372 df-laut 39373 df-ldil 39488 df-ltrn 39489 df-trl 39543 df-tgrp 40127 df-tendo 40139 df-edring 40141 df-dveca 40387 df-disoa 40413 df-dvech 40463 df-dib 40523 df-dic 40557 df-dih 40613 df-doch 40732 df-djh 40779 df-lcdual 40971 df-mapd 41009 |
This theorem is referenced by: mapdpglem32 41089 |
Copyright terms: Public domain | W3C validator |