HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocunii Structured version   Visualization version   GIF version

Theorem chocunii 31283
Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
chocuni.1 𝐻C
Assertion
Ref Expression
chocunii (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem chocunii
StepHypRef Expression
1 chocuni.1 . . . . 5 𝐻C
21chshii 31209 . . . 4 𝐻S
32a1i 11 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐻S )
4 shocsh 31266 . . . 4 (𝐻S → (⊥‘𝐻) ∈ S )
52, 4mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (⊥‘𝐻) ∈ S )
6 ocin 31278 . . . 4 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
72, 6mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐻 ∩ (⊥‘𝐻)) = 0)
8 simplll 774 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐴𝐻)
9 simpllr 775 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐵 ∈ (⊥‘𝐻))
10 simplrl 776 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐶𝐻)
11 simplrr 777 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐷 ∈ (⊥‘𝐻))
12 eqtr2 2754 . . . 4 ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
1312adantl 481 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
143, 5, 7, 8, 9, 10, 11, 13shuni 31282 . 2 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
1514ex 412 1 (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cin 3897  cfv 6486  (class class class)co 7352   + cva 30902   S csh 30910   C cch 30911  cort 30912  0c0h 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-hilex 30981  ax-hfvadd 30982  ax-hvcom 30983  ax-hvass 30984  ax-hv0cl 30985  ax-hvaddid 30986  ax-hfvmul 30987  ax-hvmulid 30988  ax-hvmulass 30989  ax-hvdistr1 30990  ax-hvdistr2 30991  ax-hvmul0 30992  ax-hfi 31061  ax-his2 31065  ax-his3 31066  ax-his4 31067
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-hvsub 30953  df-sh 31189  df-ch 31203  df-oc 31234  df-ch0 31235
This theorem is referenced by:  pjcompi  31654
  Copyright terms: Public domain W3C validator