| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chocunii | Structured version Visualization version GIF version | ||
| Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chocuni.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chocunii | ⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chocuni.1 | . . . . 5 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chshii 31163 | . . . 4 ⊢ 𝐻 ∈ Sℋ |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷))) → 𝐻 ∈ Sℋ ) |
| 4 | shocsh 31220 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ∈ Sℋ ) | |
| 5 | 2, 4 | mp1i 13 | . . 3 ⊢ ((((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷))) → (⊥‘𝐻) ∈ Sℋ ) |
| 6 | ocin 31232 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) | |
| 7 | 2, 6 | mp1i 13 | . . 3 ⊢ ((((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷))) → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) |
| 8 | simplll 774 | . . 3 ⊢ ((((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷))) → 𝐴 ∈ 𝐻) | |
| 9 | simpllr 775 | . . 3 ⊢ ((((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷))) → 𝐵 ∈ (⊥‘𝐻)) | |
| 10 | simplrl 776 | . . 3 ⊢ ((((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷))) → 𝐶 ∈ 𝐻) | |
| 11 | simplrr 777 | . . 3 ⊢ ((((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷))) → 𝐷 ∈ (⊥‘𝐻)) | |
| 12 | eqtr2 2751 | . . . 4 ⊢ ((𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷)) → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) | |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷))) → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) |
| 14 | 3, 5, 7, 8, 9, 10, 11, 13 | shuni 31236 | . 2 ⊢ ((((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷))) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| 15 | 14 | ex 412 | 1 ⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ‘cfv 6514 (class class class)co 7390 +ℎ cva 30856 Sℋ csh 30864 Cℋ cch 30865 ⊥cort 30866 0ℋc0h 30871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-hvsub 30907 df-sh 31143 df-ch 31157 df-oc 31188 df-ch0 31189 |
| This theorem is referenced by: pjcompi 31608 |
| Copyright terms: Public domain | W3C validator |