HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocunii Structured version   Visualization version   GIF version

Theorem chocunii 28711
Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
chocuni.1 𝐻C
Assertion
Ref Expression
chocunii (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem chocunii
StepHypRef Expression
1 chocuni.1 . . . . 5 𝐻C
21chshii 28635 . . . 4 𝐻S
32a1i 11 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐻S )
4 shocsh 28694 . . . 4 (𝐻S → (⊥‘𝐻) ∈ S )
52, 4mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (⊥‘𝐻) ∈ S )
6 ocin 28706 . . . 4 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
72, 6mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐻 ∩ (⊥‘𝐻)) = 0)
8 simplll 791 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐴𝐻)
9 simpllr 793 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐵 ∈ (⊥‘𝐻))
10 simplrl 795 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐶𝐻)
11 simplrr 796 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐷 ∈ (⊥‘𝐻))
12 eqtr2 2847 . . . 4 ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
1312adantl 475 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
143, 5, 7, 8, 9, 10, 11, 13shuni 28710 . 2 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
1514ex 403 1 (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  cin 3797  cfv 6127  (class class class)co 6910   + cva 28328   S csh 28336   C cch 28337  cort 28338  0c0h 28343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-hilex 28407  ax-hfvadd 28408  ax-hvcom 28409  ax-hvass 28410  ax-hv0cl 28411  ax-hvaddid 28412  ax-hfvmul 28413  ax-hvmulid 28414  ax-hvmulass 28415  ax-hvdistr1 28416  ax-hvdistr2 28417  ax-hvmul0 28418  ax-hfi 28487  ax-his2 28491  ax-his3 28492  ax-his4 28493
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-hvsub 28379  df-sh 28615  df-ch 28629  df-oc 28660  df-ch0 28661
This theorem is referenced by:  pjcompi  29082
  Copyright terms: Public domain W3C validator