HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocunii Structured version   Visualization version   GIF version

Theorem chocunii 29073
Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
chocuni.1 𝐻C
Assertion
Ref Expression
chocunii (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem chocunii
StepHypRef Expression
1 chocuni.1 . . . . 5 𝐻C
21chshii 28999 . . . 4 𝐻S
32a1i 11 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐻S )
4 shocsh 29056 . . . 4 (𝐻S → (⊥‘𝐻) ∈ S )
52, 4mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (⊥‘𝐻) ∈ S )
6 ocin 29068 . . . 4 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
72, 6mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐻 ∩ (⊥‘𝐻)) = 0)
8 simplll 774 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐴𝐻)
9 simpllr 775 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐵 ∈ (⊥‘𝐻))
10 simplrl 776 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐶𝐻)
11 simplrr 777 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐷 ∈ (⊥‘𝐻))
12 eqtr2 2845 . . . 4 ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
1312adantl 485 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
143, 5, 7, 8, 9, 10, 11, 13shuni 29072 . 2 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
1514ex 416 1 (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cin 3917  cfv 6336  (class class class)co 7138   + cva 28692   S csh 28700   C cch 28701  cort 28702  0c0h 28707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-hilex 28771  ax-hfvadd 28772  ax-hvcom 28773  ax-hvass 28774  ax-hv0cl 28775  ax-hvaddid 28776  ax-hfvmul 28777  ax-hvmulid 28778  ax-hvmulass 28779  ax-hvdistr1 28780  ax-hvdistr2 28781  ax-hvmul0 28782  ax-hfi 28851  ax-his2 28855  ax-his3 28856  ax-his4 28857
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-hvsub 28743  df-sh 28979  df-ch 28993  df-oc 29024  df-ch0 29025
This theorem is referenced by:  pjcompi  29444
  Copyright terms: Public domain W3C validator