HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocunii Structured version   Visualization version   GIF version

Theorem chocunii 30978
Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
chocuni.1 𝐻C
Assertion
Ref Expression
chocunii (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem chocunii
StepHypRef Expression
1 chocuni.1 . . . . 5 𝐻C
21chshii 30904 . . . 4 𝐻S
32a1i 11 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐻S )
4 shocsh 30961 . . . 4 (𝐻S → (⊥‘𝐻) ∈ S )
52, 4mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (⊥‘𝐻) ∈ S )
6 ocin 30973 . . . 4 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
72, 6mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐻 ∩ (⊥‘𝐻)) = 0)
8 simplll 772 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐴𝐻)
9 simpllr 773 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐵 ∈ (⊥‘𝐻))
10 simplrl 774 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐶𝐻)
11 simplrr 775 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐷 ∈ (⊥‘𝐻))
12 eqtr2 2748 . . . 4 ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
1312adantl 481 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
143, 5, 7, 8, 9, 10, 11, 13shuni 30977 . 2 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
1514ex 412 1 (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cin 3939  cfv 6533  (class class class)co 7401   + cva 30597   S csh 30605   C cch 30606  cort 30607  0c0h 30612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-hilex 30676  ax-hfvadd 30677  ax-hvcom 30678  ax-hvass 30679  ax-hv0cl 30680  ax-hvaddid 30681  ax-hfvmul 30682  ax-hvmulid 30683  ax-hvmulass 30684  ax-hvdistr1 30685  ax-hvdistr2 30686  ax-hvmul0 30687  ax-hfi 30756  ax-his2 30760  ax-his3 30761  ax-his4 30762
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-hvsub 30648  df-sh 30884  df-ch 30898  df-oc 30929  df-ch0 30930
This theorem is referenced by:  pjcompi  31349
  Copyright terms: Public domain W3C validator