HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocunii Structured version   Visualization version   GIF version

Theorem chocunii 31320
Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
chocuni.1 𝐻C
Assertion
Ref Expression
chocunii (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem chocunii
StepHypRef Expression
1 chocuni.1 . . . . 5 𝐻C
21chshii 31246 . . . 4 𝐻S
32a1i 11 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐻S )
4 shocsh 31303 . . . 4 (𝐻S → (⊥‘𝐻) ∈ S )
52, 4mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (⊥‘𝐻) ∈ S )
6 ocin 31315 . . . 4 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
72, 6mp1i 13 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐻 ∩ (⊥‘𝐻)) = 0)
8 simplll 775 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐴𝐻)
9 simpllr 776 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐵 ∈ (⊥‘𝐻))
10 simplrl 777 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐶𝐻)
11 simplrr 778 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → 𝐷 ∈ (⊥‘𝐻))
12 eqtr2 2761 . . . 4 ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
1312adantl 481 . . 3 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
143, 5, 7, 8, 9, 10, 11, 13shuni 31319 . 2 ((((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) ∧ (𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
1514ex 412 1 (((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶𝐻𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 + 𝐵) ∧ 𝑅 = (𝐶 + 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3950  cfv 6561  (class class class)co 7431   + cva 30939   S csh 30947   C cch 30948  cort 30949  0c0h 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-hvsub 30990  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272
This theorem is referenced by:  pjcompi  31691
  Copyright terms: Public domain W3C validator