MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqen Structured version   Visualization version   GIF version

Theorem fseqen 9247
Description: A set that is equinumerous to its Cartesian product is equinumerous to the set of finite sequences on it. (This can be proven more easily using some choice but this proof avoids it.) (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqen (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
Distinct variable group:   𝐴,𝑛

Proof of Theorem fseqen
Dummy variables 𝑓 𝑏 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8315 . 2 ((𝐴 × 𝐴) ≈ 𝐴 ↔ ∃𝑓 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴)
2 n0 4197 . 2 (𝐴 ≠ ∅ ↔ ∃𝑏 𝑏𝐴)
3 exdistrv 1914 . . 3 (∃𝑓𝑏(𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) ↔ (∃𝑓 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴 ∧ ∃𝑏 𝑏𝐴))
4 omex 8900 . . . . . . 7 ω ∈ V
5 simpl 475 . . . . . . . . 9 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴)
6 f1ofo 6451 . . . . . . . . 9 (𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑓:(𝐴 × 𝐴)–onto𝐴)
7 forn 6422 . . . . . . . . 9 (𝑓:(𝐴 × 𝐴)–onto𝐴 → ran 𝑓 = 𝐴)
85, 6, 73syl 18 . . . . . . . 8 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → ran 𝑓 = 𝐴)
9 vex 3419 . . . . . . . . 9 𝑓 ∈ V
109rnex 7432 . . . . . . . 8 ran 𝑓 ∈ V
118, 10syl6eqelr 2876 . . . . . . 7 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝐴 ∈ V)
12 xpexg 7290 . . . . . . 7 ((ω ∈ V ∧ 𝐴 ∈ V) → (ω × 𝐴) ∈ V)
134, 11, 12sylancr 578 . . . . . 6 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → (ω × 𝐴) ∈ V)
14 simpr 477 . . . . . . 7 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑏𝐴)
15 eqid 2779 . . . . . . 7 seq𝜔((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴𝑚 suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩}) = seq𝜔((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴𝑚 suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})
16 eqid 2779 . . . . . . 7 (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ⟨dom 𝑥, ((seq𝜔((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴𝑚 suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩) = (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ⟨dom 𝑥, ((seq𝜔((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴𝑚 suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩)
1711, 14, 5, 15, 16fseqenlem2 9245 . . . . . 6 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ⟨dom 𝑥, ((seq𝜔((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴𝑚 suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩): 𝑛 ∈ ω (𝐴𝑚 𝑛)–1-1→(ω × 𝐴))
18 f1domg 8326 . . . . . 6 ((ω × 𝐴) ∈ V → ((𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ⟨dom 𝑥, ((seq𝜔((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴𝑚 suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩): 𝑛 ∈ ω (𝐴𝑚 𝑛)–1-1→(ω × 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ (ω × 𝐴)))
1913, 17, 18sylc 65 . . . . 5 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ (ω × 𝐴))
20 fseqdom 9246 . . . . . 6 (𝐴 ∈ V → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛))
2111, 20syl 17 . . . . 5 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛))
22 sbth 8433 . . . . 5 (( 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ (ω × 𝐴) ∧ (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
2319, 21, 22syl2anc 576 . . . 4 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
2423exlimivv 1891 . . 3 (∃𝑓𝑏(𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
253, 24sylbir 227 . 2 ((∃𝑓 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴 ∧ ∃𝑏 𝑏𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
261, 2, 25syl2anb 588 1 (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wex 1742  wcel 2050  wne 2968  Vcvv 3416  c0 4179  {csn 4441  cop 4447   ciun 4792   class class class wbr 4929  cmpt 5008   × cxp 5405  dom cdm 5407  ran crn 5408  cres 5409  suc csuc 6031  1-1wf1 6185  ontowfo 6186  1-1-ontowf1o 6187  cfv 6188  (class class class)co 6976  cmpo 6978  ωcom 7396  seq𝜔cseqom 7886  𝑚 cmap 8206  cen 8303  cdom 8304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-seqom 7887  df-1o 7905  df-map 8208  df-en 8307  df-dom 8308
This theorem is referenced by:  infpwfien  9282
  Copyright terms: Public domain W3C validator