MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqen Structured version   Visualization version   GIF version

Theorem fseqen 9987
Description: A set that is equinumerous to its Cartesian product is equinumerous to the set of finite sequences on it. (This can be proven more easily using some choice but this proof avoids it.) (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqen (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
Distinct variable group:   𝐴,𝑛

Proof of Theorem fseqen
Dummy variables 𝑓 𝑏 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8931 . 2 ((𝐴 × 𝐴) ≈ 𝐴 ↔ ∃𝑓 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴)
2 n0 4319 . 2 (𝐴 ≠ ∅ ↔ ∃𝑏 𝑏𝐴)
3 exdistrv 1955 . . 3 (∃𝑓𝑏(𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) ↔ (∃𝑓 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴 ∧ ∃𝑏 𝑏𝐴))
4 omex 9603 . . . . . . 7 ω ∈ V
5 simpl 482 . . . . . . . . 9 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴)
6 f1ofo 6810 . . . . . . . . 9 (𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑓:(𝐴 × 𝐴)–onto𝐴)
7 forn 6778 . . . . . . . . 9 (𝑓:(𝐴 × 𝐴)–onto𝐴 → ran 𝑓 = 𝐴)
85, 6, 73syl 18 . . . . . . . 8 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → ran 𝑓 = 𝐴)
9 vex 3454 . . . . . . . . 9 𝑓 ∈ V
109rnex 7889 . . . . . . . 8 ran 𝑓 ∈ V
118, 10eqeltrrdi 2838 . . . . . . 7 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝐴 ∈ V)
12 xpexg 7729 . . . . . . 7 ((ω ∈ V ∧ 𝐴 ∈ V) → (ω × 𝐴) ∈ V)
134, 11, 12sylancr 587 . . . . . 6 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → (ω × 𝐴) ∈ V)
14 simpr 484 . . . . . . 7 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑏𝐴)
15 eqid 2730 . . . . . . 7 seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩}) = seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})
16 eqid 2730 . . . . . . 7 (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ⟨dom 𝑥, ((seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩) = (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ⟨dom 𝑥, ((seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩)
1711, 14, 5, 15, 16fseqenlem2 9985 . . . . . 6 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ⟨dom 𝑥, ((seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩): 𝑛 ∈ ω (𝐴m 𝑛)–1-1→(ω × 𝐴))
18 f1domg 8946 . . . . . 6 ((ω × 𝐴) ∈ V → ((𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ⟨dom 𝑥, ((seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩): 𝑛 ∈ ω (𝐴m 𝑛)–1-1→(ω × 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≼ (ω × 𝐴)))
1913, 17, 18sylc 65 . . . . 5 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≼ (ω × 𝐴))
20 fseqdom 9986 . . . . . 6 (𝐴 ∈ V → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
2111, 20syl 17 . . . . 5 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
22 sbth 9067 . . . . 5 (( 𝑛 ∈ ω (𝐴m 𝑛) ≼ (ω × 𝐴) ∧ (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
2319, 21, 22syl2anc 584 . . . 4 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
2423exlimivv 1932 . . 3 (∃𝑓𝑏(𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
253, 24sylbir 235 . 2 ((∃𝑓 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴 ∧ ∃𝑏 𝑏𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
261, 2, 25syl2anb 598 1 (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  Vcvv 3450  c0 4299  {csn 4592  cop 4598   ciun 4958   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  suc csuc 6337  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845  seqωcseqom 8418  m cmap 8802  cen 8918  cdom 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-map 8804  df-en 8922  df-dom 8923
This theorem is referenced by:  infpwfien  10022
  Copyright terms: Public domain W3C validator