MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqen Structured version   Visualization version   GIF version

Theorem fseqen 9439
Description: A set that is equinumerous to its Cartesian product is equinumerous to the set of finite sequences on it. (This can be proven more easily using some choice but this proof avoids it.) (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqen (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
Distinct variable group:   𝐴,𝑛

Proof of Theorem fseqen
Dummy variables 𝑓 𝑏 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8504 . 2 ((𝐴 × 𝐴) ≈ 𝐴 ↔ ∃𝑓 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴)
2 n0 4296 . 2 (𝐴 ≠ ∅ ↔ ∃𝑏 𝑏𝐴)
3 exdistrv 1956 . . 3 (∃𝑓𝑏(𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) ↔ (∃𝑓 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴 ∧ ∃𝑏 𝑏𝐴))
4 omex 9092 . . . . . . 7 ω ∈ V
5 simpl 485 . . . . . . . . 9 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴)
6 f1ofo 6608 . . . . . . . . 9 (𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑓:(𝐴 × 𝐴)–onto𝐴)
7 forn 6579 . . . . . . . . 9 (𝑓:(𝐴 × 𝐴)–onto𝐴 → ran 𝑓 = 𝐴)
85, 6, 73syl 18 . . . . . . . 8 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → ran 𝑓 = 𝐴)
9 vex 3489 . . . . . . . . 9 𝑓 ∈ V
109rnex 7603 . . . . . . . 8 ran 𝑓 ∈ V
118, 10eqeltrrdi 2922 . . . . . . 7 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝐴 ∈ V)
12 xpexg 7459 . . . . . . 7 ((ω ∈ V ∧ 𝐴 ∈ V) → (ω × 𝐴) ∈ V)
134, 11, 12sylancr 589 . . . . . 6 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → (ω × 𝐴) ∈ V)
14 simpr 487 . . . . . . 7 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑏𝐴)
15 eqid 2821 . . . . . . 7 seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩}) = seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})
16 eqid 2821 . . . . . . 7 (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ⟨dom 𝑥, ((seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩) = (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ⟨dom 𝑥, ((seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩)
1711, 14, 5, 15, 16fseqenlem2 9437 . . . . . 6 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ⟨dom 𝑥, ((seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩): 𝑛 ∈ ω (𝐴m 𝑛)–1-1→(ω × 𝐴))
18 f1domg 8515 . . . . . 6 ((ω × 𝐴) ∈ V → ((𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ⟨dom 𝑥, ((seqω((𝑘 ∈ V, 𝑔 ∈ V ↦ (𝑦 ∈ (𝐴m suc 𝑘) ↦ ((𝑔‘(𝑦𝑘))𝑓(𝑦𝑘)))), {⟨∅, 𝑏⟩})‘dom 𝑥)‘𝑥)⟩): 𝑛 ∈ ω (𝐴m 𝑛)–1-1→(ω × 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≼ (ω × 𝐴)))
1913, 17, 18sylc 65 . . . . 5 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≼ (ω × 𝐴))
20 fseqdom 9438 . . . . . 6 (𝐴 ∈ V → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
2111, 20syl 17 . . . . 5 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
22 sbth 8623 . . . . 5 (( 𝑛 ∈ ω (𝐴m 𝑛) ≼ (ω × 𝐴) ∧ (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛)) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
2319, 21, 22syl2anc 586 . . . 4 ((𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
2423exlimivv 1933 . . 3 (∃𝑓𝑏(𝑓:(𝐴 × 𝐴)–1-1-onto𝐴𝑏𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
253, 24sylbir 237 . 2 ((∃𝑓 𝑓:(𝐴 × 𝐴)–1-1-onto𝐴 ∧ ∃𝑏 𝑏𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
261, 2, 25syl2anb 599 1 (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3016  Vcvv 3486  c0 4279  {csn 4553  cop 4559   ciun 4905   class class class wbr 5052  cmpt 5132   × cxp 5539  dom cdm 5541  ran crn 5542  cres 5543  suc csuc 6179  1-1wf1 6338  ontowfo 6339  1-1-ontowf1o 6340  cfv 6341  (class class class)co 7142  cmpo 7144  ωcom 7566  seqωcseqom 8069  m cmap 8392  cen 8492  cdom 8493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-seqom 8070  df-1o 8088  df-map 8394  df-en 8496  df-dom 8497
This theorem is referenced by:  infpwfien  9474
  Copyright terms: Public domain W3C validator