MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgriedgleord Structured version   Visualization version   GIF version

Theorem usgriedgleord 29210
Description: Alternate version of usgredgleord 29215, not using the notation (Edg‘𝐺). In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgriedgleord ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}) ≤ (♯‘𝑉))
Distinct variable groups:   𝑥,𝐸   𝑥,𝑁
Allowed substitution hints:   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem usgriedgleord
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg2v.v . . . 4 𝑉 = (Vtx‘𝐺)
21fvexi 6855 . . 3 𝑉 ∈ V
3 usgredg2v.e . . . 4 𝐸 = (iEdg‘𝐺)
4 eqid 2729 . . . 4 {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
5 eqid 2729 . . . 4 (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})) = (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
61, 3, 4, 5usgredg2v 29209 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})):{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}–1-1𝑉)
7 f1domg 8921 . . 3 (𝑉 ∈ V → ((𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})):{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}–1-1𝑉 → {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ≼ 𝑉))
82, 6, 7mpsyl 68 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ≼ 𝑉)
9 hashdomi 14324 . 2 ({𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ≼ 𝑉 → (♯‘{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}) ≤ (♯‘𝑉))
108, 9syl 17 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}) ≤ (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  {cpr 4587   class class class wbr 5102  cmpt 5183  dom cdm 5631  1-1wf1 6497  cfv 6500  crio 7326  cdom 8894  cle 11188  chash 14274  Vtxcvtx 28978  iEdgciedg 28979  USGraphcusgr 29131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8649  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-dju 9833  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-nn 12166  df-2 12228  df-n0 12422  df-xnn0 12495  df-z 12509  df-uz 12773  df-fz 13448  df-hash 14275  df-edg 29030  df-umgr 29065  df-usgr 29133
This theorem is referenced by:  usgredgleordALT  29216
  Copyright terms: Public domain W3C validator