MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgriedgleord Structured version   Visualization version   GIF version

Theorem usgriedgleord 26937
Description: Alternate version of usgredgleord 26942, not using the notation (Edg‘𝐺). In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgriedgleord ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}) ≤ (♯‘𝑉))
Distinct variable groups:   𝑥,𝐸   𝑥,𝑁
Allowed substitution hints:   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem usgriedgleord
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg2v.v . . . 4 𝑉 = (Vtx‘𝐺)
21fvexi 6677 . . 3 𝑉 ∈ V
3 usgredg2v.e . . . 4 𝐸 = (iEdg‘𝐺)
4 eqid 2818 . . . 4 {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
5 eqid 2818 . . . 4 (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})) = (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
61, 3, 4, 5usgredg2v 26936 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})):{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}–1-1𝑉)
7 f1domg 8517 . . 3 (𝑉 ∈ V → ((𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})):{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}–1-1𝑉 → {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ≼ 𝑉))
82, 6, 7mpsyl 68 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ≼ 𝑉)
9 hashdomi 13729 . 2 ({𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} ≼ 𝑉 → (♯‘{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}) ≤ (♯‘𝑉))
108, 9syl 17 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}) ≤ (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {crab 3139  Vcvv 3492  {cpr 4559   class class class wbr 5057  cmpt 5137  dom cdm 5548  1-1wf1 6345  cfv 6348  crio 7102  cdom 8495  cle 10664  chash 13678  Vtxcvtx 26708  iEdgciedg 26709  USGraphcusgr 26861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-hash 13679  df-edg 26760  df-umgr 26795  df-usgr 26863
This theorem is referenced by:  usgredgleordALT  26943
  Copyright terms: Public domain W3C validator