|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > usgriedgleord | Structured version Visualization version GIF version | ||
| Description: Alternate version of usgredgleord 29251, not using the notation (Edg‘𝐺). In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| usgredg2v.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| usgredg2v.e | ⊢ 𝐸 = (iEdg‘𝐺) | 
| Ref | Expression | 
|---|---|
| usgriedgleord | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}) ≤ (♯‘𝑉)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | usgredg2v.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | fvexi 6919 | . . 3 ⊢ 𝑉 ∈ V | 
| 3 | usgredg2v.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | eqid 2736 | . . . 4 ⊢ {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} = {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} | |
| 5 | eqid 2736 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ↦ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁})) = (𝑦 ∈ {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ↦ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁})) | |
| 6 | 1, 3, 4, 5 | usgredg2v 29245 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝑦 ∈ {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ↦ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁})):{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}–1-1→𝑉) | 
| 7 | f1domg 9013 | . . 3 ⊢ (𝑉 ∈ V → ((𝑦 ∈ {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ↦ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁})):{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}–1-1→𝑉 → {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ≼ 𝑉)) | |
| 8 | 2, 6, 7 | mpsyl 68 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ≼ 𝑉) | 
| 9 | hashdomi 14420 | . 2 ⊢ ({𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ≼ 𝑉 → (♯‘{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}) ≤ (♯‘𝑉)) | |
| 10 | 8, 9 | syl 17 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}) ≤ (♯‘𝑉)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 Vcvv 3479 {cpr 4627 class class class wbr 5142 ↦ cmpt 5224 dom cdm 5684 –1-1→wf1 6557 ‘cfv 6560 ℩crio 7388 ≼ cdom 8984 ≤ cle 11297 ♯chash 14370 Vtxcvtx 29014 iEdgciedg 29015 USGraphcusgr 29167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-fz 13549 df-hash 14371 df-edg 29066 df-umgr 29101 df-usgr 29169 | 
| This theorem is referenced by: usgredgleordALT 29252 | 
| Copyright terms: Public domain | W3C validator |