MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem4 Structured version   Visualization version   GIF version

Theorem basellem4 27001
Description: Lemma for basel 27007. By basellem3 27000, the expression 𝑃((cot𝑥)↑2) = sin(𝑁𝑥) / (sin𝑥)↑𝑁 goes to zero whenever 𝑥 = 𝑛π / 𝑁 for some 𝑛 ∈ (1...𝑀), so this function enumerates 𝑀 distinct roots of a degree- 𝑀 polynomial, which must therefore be all the roots by fta1 26223. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
Assertion
Ref Expression
basellem4 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)   𝑇(𝑡,𝑗,𝑛)

Proof of Theorem basellem4
Dummy variables 𝑘 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basel.n . . . . . . . . 9 𝑁 = ((2 · 𝑀) + 1)
21basellem1 26998 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)))
3 tanrpcl 26420 . . . . . . . 8 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
42, 3syl 17 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
5 2z 12572 . . . . . . . 8 2 ∈ ℤ
6 znegcl 12575 . . . . . . . 8 (2 ∈ ℤ → -2 ∈ ℤ)
75, 6ax-mp 5 . . . . . . 7 -2 ∈ ℤ
8 rpexpcl 14052 . . . . . . 7 (((tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+ ∧ -2 ∈ ℤ) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
94, 7, 8sylancl 586 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
109rpcnd 13004 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ)
11 basel.p . . . . . . . 8 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
121, 11basellem3 27000 . . . . . . 7 ((𝑀 ∈ ℕ ∧ ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2))) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
132, 12syldan 591 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
14 elfzelz 13492 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℤ)
1514adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℤ)
1615zred 12645 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℝ)
17 pire 26373 . . . . . . . . . . . 12 π ∈ ℝ
18 remulcl 11160 . . . . . . . . . . . 12 ((𝑛 ∈ ℝ ∧ π ∈ ℝ) → (𝑛 · π) ∈ ℝ)
1916, 17, 18sylancl 586 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℝ)
2019recnd 11209 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℂ)
21 2nn 12266 . . . . . . . . . . . . . . 15 2 ∈ ℕ
22 nnmulcl 12217 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
2321, 22mpan 690 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
2423peano2nnd 12210 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
251, 24eqeltrid 2833 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2625adantr 480 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2726nncnd 12209 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℂ)
2826nnne0d 12243 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ≠ 0)
2920, 27, 28divcan2d 11967 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑁 · ((𝑛 · π) / 𝑁)) = (𝑛 · π))
3029fveq2d 6865 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = (sin‘(𝑛 · π)))
31 sinkpi 26438 . . . . . . . . 9 (𝑛 ∈ ℤ → (sin‘(𝑛 · π)) = 0)
3215, 31syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑛 · π)) = 0)
3330, 32eqtrd 2765 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = 0)
3433oveq1d 7405 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
3519, 26nndivred 12247 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ ℝ)
3635resincld 16118 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℝ)
3736recnd 11209 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℂ)
3826nnnn0d 12510 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ0)
3937, 38expcld 14118 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ∈ ℂ)
40 sincosq1sgn 26414 . . . . . . . . . . 11 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
412, 40syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
4241simpld 494 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 0 < (sin‘((𝑛 · π) / 𝑁)))
4342gt0ne0d 11749 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ≠ 0)
4426nnzd 12563 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℤ)
4537, 43, 44expne0d 14124 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ≠ 0)
4639, 45div0d 11964 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = 0)
4713, 34, 463eqtrd 2769 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)
481, 11basellem2 26999 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
4948simp1d 1142 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
50 plyf 26110 . . . . . . . 8 (𝑃 ∈ (Poly‘ℂ) → 𝑃:ℂ⟶ℂ)
51 ffn 6691 . . . . . . . 8 (𝑃:ℂ⟶ℂ → 𝑃 Fn ℂ)
5249, 50, 513syl 18 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 Fn ℂ)
5352adantr 480 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑃 Fn ℂ)
54 fniniseg 7035 . . . . . 6 (𝑃 Fn ℂ → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5553, 54syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5610, 47, 55mpbir2and 713 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}))
57 basel.t . . . 4 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
5856, 57fmptd 7089 . . 3 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶(𝑃 “ {0}))
59 fveq2 6861 . . . . . 6 (𝑘 = 𝑚 → (𝑇𝑘) = (𝑇𝑚))
60 fveq2 6861 . . . . . 6 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
61 fveq2 6861 . . . . . 6 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
6214zred 12645 . . . . . . 7 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℝ)
6362ssriv 3953 . . . . . 6 (1...𝑀) ⊆ ℝ
649rpred 13002 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ)
6564, 57fmptd 7089 . . . . . . 7 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶ℝ)
6665ffvelcdmda 7059 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇𝑘) ∈ ℝ)
67 simplr 768 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 < 𝑚)
6863sseli 3945 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℝ)
6968ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 ∈ ℝ)
7063sseli 3945 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℝ)
7170ad2antll 729 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑚 ∈ ℝ)
7217a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → π ∈ ℝ)
73 pipos 26375 . . . . . . . . . . . . . . . 16 0 < π
7473a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < π)
75 ltmul1 12039 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7669, 71, 72, 74, 75syl112anc 1376 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7767, 76mpbid 232 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) < (𝑚 · π))
78 remulcl 11160 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ π ∈ ℝ) → (𝑘 · π) ∈ ℝ)
7969, 17, 78sylancl 586 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) ∈ ℝ)
80 remulcl 11160 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ π ∈ ℝ) → (𝑚 · π) ∈ ℝ)
8171, 17, 80sylancl 586 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑚 · π) ∈ ℝ)
8225ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℕ)
8382nnred 12208 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℝ)
8482nngt0d 12242 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < 𝑁)
85 ltdiv1 12054 . . . . . . . . . . . . . 14 (((𝑘 · π) ∈ ℝ ∧ (𝑚 · π) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8679, 81, 83, 84, 85syl112anc 1376 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8777, 86mpbid 232 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁))
88 neghalfpirx 26382 . . . . . . . . . . . . . . 15 -(π / 2) ∈ ℝ*
89 pirp 26377 . . . . . . . . . . . . . . . . 17 π ∈ ℝ+
90 rphalfcl 12987 . . . . . . . . . . . . . . . . 17 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
91 rpge0 12972 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
9289, 90, 91mp2b 10 . . . . . . . . . . . . . . . 16 0 ≤ (π / 2)
93 halfpire 26380 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
94 le0neg2 11694 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ → (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . 16 (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0)
9692, 95mpbi 230 . . . . . . . . . . . . . . 15 -(π / 2) ≤ 0
97 iooss1 13348 . . . . . . . . . . . . . . 15 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
9888, 96, 97mp2an 692 . . . . . . . . . . . . . 14 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
991basellem1 26998 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10099ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10198, 100sselid 3947 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
1021basellem1 26998 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑚 ∈ (1...𝑀)) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
103102ad2ant2rl 749 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
10498, 103sselid 3947 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
105 tanord 26454 . . . . . . . . . . . . 13 ((((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)) ∧ ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
106101, 104, 105syl2anc 584 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
10787, 106mpbid 232 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)))
108 tanrpcl 26420 . . . . . . . . . . . . 13 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
109100, 108syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
110 tanrpcl 26420 . . . . . . . . . . . . 13 (((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
111103, 110syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
112 rprege0 12974 . . . . . . . . . . . . 13 ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))))
113 rprege0 12974 . . . . . . . . . . . . 13 ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁))))
114 lt2sq 14105 . . . . . . . . . . . . 13 ((((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))) ∧ ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁)))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
115112, 113, 114syl2an 596 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
116109, 111, 115syl2anc 584 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
117107, 116mpbid 232 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2))
118 rpexpcl 14052 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
119109, 5, 118sylancl 586 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
120 rpexpcl 14052 . . . . . . . . . . . 12 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
121111, 5, 120sylancl 586 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
122119, 121ltrecd 13020 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2) ↔ (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
123117, 122mpbid 232 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
124 oveq1 7397 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑛 · π) = (𝑚 · π))
125124fvoveq1d 7412 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑚 · π) / 𝑁)))
126125oveq1d 7405 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
127 ovex 7423 . . . . . . . . . . . 12 ((tan‘((𝑚 · π) / 𝑁))↑-2) ∈ V
128126, 57, 127fvmpt 6971 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑀) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
129128ad2antll 729 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
130111rpcnd 13004 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℂ)
131 2nn0 12466 . . . . . . . . . . 11 2 ∈ ℕ0
132 expneg 14041 . . . . . . . . . . 11 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
133130, 131, 132sylancl 586 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
134129, 133eqtrd 2765 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
135 oveq1 7397 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
136135fvoveq1d 7412 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁)))
137136oveq1d 7405 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
138 ovex 7423 . . . . . . . . . . . 12 ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ V
139137, 57, 138fvmpt 6971 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑀) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
140139ad2antrl 728 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
141109rpcnd 13004 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ)
142 expneg 14041 . . . . . . . . . . 11 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
143141, 131, 142sylancl 586 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
144140, 143eqtrd 2765 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
145123, 134, 1443brtr4d 5142 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) < (𝑇𝑘))
146145an32s 652 . . . . . . 7 (((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) ∧ 𝑘 < 𝑚) → (𝑇𝑚) < (𝑇𝑘))
147146ex 412 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 → (𝑇𝑚) < (𝑇𝑘)))
14859, 60, 61, 63, 66, 147eqord2 11716 . . . . 5 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → (𝑥 = 𝑦 ↔ (𝑇𝑥) = (𝑇𝑦)))
149148biimprd 248 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
150149ralrimivva 3181 . . 3 (𝑀 ∈ ℕ → ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
151 dff13 7232 . . 3 (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ (𝑇:(1...𝑀)⟶(𝑃 “ {0}) ∧ ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
15258, 150, 151sylanbrc 583 . 2 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1→(𝑃 “ {0}))
15348simp2d 1143 . . . . . . . . 9 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
154 nnne0 12227 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
155153, 154eqnetrd 2993 . . . . . . . 8 (𝑀 ∈ ℕ → (deg‘𝑃) ≠ 0)
156 fveq2 6861 . . . . . . . . . 10 (𝑃 = 0𝑝 → (deg‘𝑃) = (deg‘0𝑝))
157 dgr0 26175 . . . . . . . . . 10 (deg‘0𝑝) = 0
158156, 157eqtrdi 2781 . . . . . . . . 9 (𝑃 = 0𝑝 → (deg‘𝑃) = 0)
159158necon3i 2958 . . . . . . . 8 ((deg‘𝑃) ≠ 0 → 𝑃 ≠ 0𝑝)
160155, 159syl 17 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 ≠ 0𝑝)
161 eqid 2730 . . . . . . . 8 (𝑃 “ {0}) = (𝑃 “ {0})
162161fta1 26223 . . . . . . 7 ((𝑃 ∈ (Poly‘ℂ) ∧ 𝑃 ≠ 0𝑝) → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
16349, 160, 162syl2anc 584 . . . . . 6 (𝑀 ∈ ℕ → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
164163simpld 494 . . . . 5 (𝑀 ∈ ℕ → (𝑃 “ {0}) ∈ Fin)
165 f1domg 8946 . . . . 5 ((𝑃 “ {0}) ∈ Fin → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) → (1...𝑀) ≼ (𝑃 “ {0})))
166164, 152, 165sylc 65 . . . 4 (𝑀 ∈ ℕ → (1...𝑀) ≼ (𝑃 “ {0}))
167163simprd 495 . . . . . 6 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃))
168 nnnn0 12456 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
169 hashfz1 14318 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
170168, 169syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
171153, 170eqtr4d 2768 . . . . . 6 (𝑀 ∈ ℕ → (deg‘𝑃) = (♯‘(1...𝑀)))
172167, 171breqtrd 5136 . . . . 5 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)))
173 fzfid 13945 . . . . . 6 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
174 hashdom 14351 . . . . . 6 (((𝑃 “ {0}) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
175164, 173, 174syl2anc 584 . . . . 5 (𝑀 ∈ ℕ → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
176172, 175mpbid 232 . . . 4 (𝑀 ∈ ℕ → (𝑃 “ {0}) ≼ (1...𝑀))
177 sbth 9067 . . . 4 (((1...𝑀) ≼ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ≼ (1...𝑀)) → (1...𝑀) ≈ (𝑃 “ {0}))
178166, 176, 177syl2anc 584 . . 3 (𝑀 ∈ ℕ → (1...𝑀) ≈ (𝑃 “ {0}))
179 f1finf1o 9223 . . 3 (((1...𝑀) ≈ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ∈ Fin) → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
180178, 164, 179syl2anc 584 . 2 (𝑀 ∈ ℕ → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
181152, 180mpbid 232 1 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cen 8918  cdom 8919  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  +crp 12958  (,)cioo 13313  ...cfz 13475  cexp 14033  Ccbc 14274  chash 14302  Σcsu 15659  sincsin 16036  cosccos 16037  tanctan 16038  πcpi 16039  0𝑝c0p 25577  Polycply 26096  coeffccoe 26098  degcdgr 26099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-0p 25578  df-limc 25774  df-dv 25775  df-ply 26100  df-idp 26101  df-coe 26102  df-dgr 26103  df-quot 26206
This theorem is referenced by:  basellem5  27002
  Copyright terms: Public domain W3C validator