MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem4 Structured version   Visualization version   GIF version

Theorem basellem4 26233
Description: Lemma for basel 26239. By basellem3 26232, the expression 𝑃((cot𝑥)↑2) = sin(𝑁𝑥) / (sin𝑥)↑𝑁 goes to zero whenever 𝑥 = 𝑛π / 𝑁 for some 𝑛 ∈ (1...𝑀), so this function enumerates 𝑀 distinct roots of a degree- 𝑀 polynomial, which must therefore be all the roots by fta1 25468. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
Assertion
Ref Expression
basellem4 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)   𝑇(𝑡,𝑗,𝑛)

Proof of Theorem basellem4
Dummy variables 𝑘 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basel.n . . . . . . . . 9 𝑁 = ((2 · 𝑀) + 1)
21basellem1 26230 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)))
3 tanrpcl 25661 . . . . . . . 8 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
42, 3syl 17 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
5 2z 12352 . . . . . . . 8 2 ∈ ℤ
6 znegcl 12355 . . . . . . . 8 (2 ∈ ℤ → -2 ∈ ℤ)
75, 6ax-mp 5 . . . . . . 7 -2 ∈ ℤ
8 rpexpcl 13801 . . . . . . 7 (((tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+ ∧ -2 ∈ ℤ) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
94, 7, 8sylancl 586 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
109rpcnd 12774 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ)
11 basel.p . . . . . . . 8 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
121, 11basellem3 26232 . . . . . . 7 ((𝑀 ∈ ℕ ∧ ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2))) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
132, 12syldan 591 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
14 elfzelz 13256 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℤ)
1514adantl 482 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℤ)
1615zred 12426 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℝ)
17 pire 25615 . . . . . . . . . . . 12 π ∈ ℝ
18 remulcl 10956 . . . . . . . . . . . 12 ((𝑛 ∈ ℝ ∧ π ∈ ℝ) → (𝑛 · π) ∈ ℝ)
1916, 17, 18sylancl 586 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℝ)
2019recnd 11003 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℂ)
21 2nn 12046 . . . . . . . . . . . . . . 15 2 ∈ ℕ
22 nnmulcl 11997 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
2321, 22mpan 687 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
2423peano2nnd 11990 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
251, 24eqeltrid 2843 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2625adantr 481 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2726nncnd 11989 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℂ)
2826nnne0d 12023 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ≠ 0)
2920, 27, 28divcan2d 11753 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑁 · ((𝑛 · π) / 𝑁)) = (𝑛 · π))
3029fveq2d 6778 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = (sin‘(𝑛 · π)))
31 sinkpi 25678 . . . . . . . . 9 (𝑛 ∈ ℤ → (sin‘(𝑛 · π)) = 0)
3215, 31syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑛 · π)) = 0)
3330, 32eqtrd 2778 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = 0)
3433oveq1d 7290 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
3519, 26nndivred 12027 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ ℝ)
3635resincld 15852 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℝ)
3736recnd 11003 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℂ)
3826nnnn0d 12293 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ0)
3937, 38expcld 13864 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ∈ ℂ)
40 sincosq1sgn 25655 . . . . . . . . . . 11 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
412, 40syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
4241simpld 495 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 0 < (sin‘((𝑛 · π) / 𝑁)))
4342gt0ne0d 11539 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ≠ 0)
4426nnzd 12425 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℤ)
4537, 43, 44expne0d 13870 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ≠ 0)
4639, 45div0d 11750 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = 0)
4713, 34, 463eqtrd 2782 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)
481, 11basellem2 26231 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
4948simp1d 1141 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
50 plyf 25359 . . . . . . . 8 (𝑃 ∈ (Poly‘ℂ) → 𝑃:ℂ⟶ℂ)
51 ffn 6600 . . . . . . . 8 (𝑃:ℂ⟶ℂ → 𝑃 Fn ℂ)
5249, 50, 513syl 18 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 Fn ℂ)
5352adantr 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑃 Fn ℂ)
54 fniniseg 6937 . . . . . 6 (𝑃 Fn ℂ → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5553, 54syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5610, 47, 55mpbir2and 710 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}))
57 basel.t . . . 4 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
5856, 57fmptd 6988 . . 3 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶(𝑃 “ {0}))
59 fveq2 6774 . . . . . 6 (𝑘 = 𝑚 → (𝑇𝑘) = (𝑇𝑚))
60 fveq2 6774 . . . . . 6 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
61 fveq2 6774 . . . . . 6 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
6214zred 12426 . . . . . . 7 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℝ)
6362ssriv 3925 . . . . . 6 (1...𝑀) ⊆ ℝ
649rpred 12772 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ)
6564, 57fmptd 6988 . . . . . . 7 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶ℝ)
6665ffvelrnda 6961 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇𝑘) ∈ ℝ)
67 simplr 766 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 < 𝑚)
6863sseli 3917 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℝ)
6968ad2antrl 725 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 ∈ ℝ)
7063sseli 3917 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℝ)
7170ad2antll 726 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑚 ∈ ℝ)
7217a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → π ∈ ℝ)
73 pipos 25617 . . . . . . . . . . . . . . . 16 0 < π
7473a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < π)
75 ltmul1 11825 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7669, 71, 72, 74, 75syl112anc 1373 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7767, 76mpbid 231 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) < (𝑚 · π))
78 remulcl 10956 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ π ∈ ℝ) → (𝑘 · π) ∈ ℝ)
7969, 17, 78sylancl 586 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) ∈ ℝ)
80 remulcl 10956 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ π ∈ ℝ) → (𝑚 · π) ∈ ℝ)
8171, 17, 80sylancl 586 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑚 · π) ∈ ℝ)
8225ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℕ)
8382nnred 11988 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℝ)
8482nngt0d 12022 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < 𝑁)
85 ltdiv1 11839 . . . . . . . . . . . . . 14 (((𝑘 · π) ∈ ℝ ∧ (𝑚 · π) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8679, 81, 83, 84, 85syl112anc 1373 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8777, 86mpbid 231 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁))
88 neghalfpirx 25623 . . . . . . . . . . . . . . 15 -(π / 2) ∈ ℝ*
89 pirp 25618 . . . . . . . . . . . . . . . . 17 π ∈ ℝ+
90 rphalfcl 12757 . . . . . . . . . . . . . . . . 17 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
91 rpge0 12743 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
9289, 90, 91mp2b 10 . . . . . . . . . . . . . . . 16 0 ≤ (π / 2)
93 halfpire 25621 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
94 le0neg2 11484 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ → (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . 16 (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0)
9692, 95mpbi 229 . . . . . . . . . . . . . . 15 -(π / 2) ≤ 0
97 iooss1 13114 . . . . . . . . . . . . . . 15 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
9888, 96, 97mp2an 689 . . . . . . . . . . . . . 14 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
991basellem1 26230 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10099ad2ant2r 744 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10198, 100sselid 3919 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
1021basellem1 26230 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑚 ∈ (1...𝑀)) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
103102ad2ant2rl 746 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
10498, 103sselid 3919 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
105 tanord 25694 . . . . . . . . . . . . 13 ((((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)) ∧ ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
106101, 104, 105syl2anc 584 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
10787, 106mpbid 231 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)))
108 tanrpcl 25661 . . . . . . . . . . . . 13 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
109100, 108syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
110 tanrpcl 25661 . . . . . . . . . . . . 13 (((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
111103, 110syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
112 rprege0 12745 . . . . . . . . . . . . 13 ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))))
113 rprege0 12745 . . . . . . . . . . . . 13 ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁))))
114 lt2sq 13852 . . . . . . . . . . . . 13 ((((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))) ∧ ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁)))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
115112, 113, 114syl2an 596 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
116109, 111, 115syl2anc 584 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
117107, 116mpbid 231 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2))
118 rpexpcl 13801 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
119109, 5, 118sylancl 586 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
120 rpexpcl 13801 . . . . . . . . . . . 12 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
121111, 5, 120sylancl 586 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
122119, 121ltrecd 12790 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2) ↔ (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
123117, 122mpbid 231 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
124 oveq1 7282 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑛 · π) = (𝑚 · π))
125124fvoveq1d 7297 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑚 · π) / 𝑁)))
126125oveq1d 7290 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
127 ovex 7308 . . . . . . . . . . . 12 ((tan‘((𝑚 · π) / 𝑁))↑-2) ∈ V
128126, 57, 127fvmpt 6875 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑀) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
129128ad2antll 726 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
130111rpcnd 12774 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℂ)
131 2nn0 12250 . . . . . . . . . . 11 2 ∈ ℕ0
132 expneg 13790 . . . . . . . . . . 11 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
133130, 131, 132sylancl 586 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
134129, 133eqtrd 2778 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
135 oveq1 7282 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
136135fvoveq1d 7297 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁)))
137136oveq1d 7290 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
138 ovex 7308 . . . . . . . . . . . 12 ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ V
139137, 57, 138fvmpt 6875 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑀) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
140139ad2antrl 725 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
141109rpcnd 12774 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ)
142 expneg 13790 . . . . . . . . . . 11 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
143141, 131, 142sylancl 586 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
144140, 143eqtrd 2778 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
145123, 134, 1443brtr4d 5106 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) < (𝑇𝑘))
146145an32s 649 . . . . . . 7 (((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) ∧ 𝑘 < 𝑚) → (𝑇𝑚) < (𝑇𝑘))
147146ex 413 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 → (𝑇𝑚) < (𝑇𝑘)))
14859, 60, 61, 63, 66, 147eqord2 11506 . . . . 5 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → (𝑥 = 𝑦 ↔ (𝑇𝑥) = (𝑇𝑦)))
149148biimprd 247 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
150149ralrimivva 3123 . . 3 (𝑀 ∈ ℕ → ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
151 dff13 7128 . . 3 (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ (𝑇:(1...𝑀)⟶(𝑃 “ {0}) ∧ ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
15258, 150, 151sylanbrc 583 . 2 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1→(𝑃 “ {0}))
15348simp2d 1142 . . . . . . . . 9 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
154 nnne0 12007 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
155153, 154eqnetrd 3011 . . . . . . . 8 (𝑀 ∈ ℕ → (deg‘𝑃) ≠ 0)
156 fveq2 6774 . . . . . . . . . 10 (𝑃 = 0𝑝 → (deg‘𝑃) = (deg‘0𝑝))
157 dgr0 25423 . . . . . . . . . 10 (deg‘0𝑝) = 0
158156, 157eqtrdi 2794 . . . . . . . . 9 (𝑃 = 0𝑝 → (deg‘𝑃) = 0)
159158necon3i 2976 . . . . . . . 8 ((deg‘𝑃) ≠ 0 → 𝑃 ≠ 0𝑝)
160155, 159syl 17 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 ≠ 0𝑝)
161 eqid 2738 . . . . . . . 8 (𝑃 “ {0}) = (𝑃 “ {0})
162161fta1 25468 . . . . . . 7 ((𝑃 ∈ (Poly‘ℂ) ∧ 𝑃 ≠ 0𝑝) → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
16349, 160, 162syl2anc 584 . . . . . 6 (𝑀 ∈ ℕ → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
164163simpld 495 . . . . 5 (𝑀 ∈ ℕ → (𝑃 “ {0}) ∈ Fin)
165 f1domg 8760 . . . . 5 ((𝑃 “ {0}) ∈ Fin → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) → (1...𝑀) ≼ (𝑃 “ {0})))
166164, 152, 165sylc 65 . . . 4 (𝑀 ∈ ℕ → (1...𝑀) ≼ (𝑃 “ {0}))
167163simprd 496 . . . . . 6 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃))
168 nnnn0 12240 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
169 hashfz1 14060 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
170168, 169syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
171153, 170eqtr4d 2781 . . . . . 6 (𝑀 ∈ ℕ → (deg‘𝑃) = (♯‘(1...𝑀)))
172167, 171breqtrd 5100 . . . . 5 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)))
173 fzfid 13693 . . . . . 6 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
174 hashdom 14094 . . . . . 6 (((𝑃 “ {0}) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
175164, 173, 174syl2anc 584 . . . . 5 (𝑀 ∈ ℕ → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
176172, 175mpbid 231 . . . 4 (𝑀 ∈ ℕ → (𝑃 “ {0}) ≼ (1...𝑀))
177 sbth 8880 . . . 4 (((1...𝑀) ≼ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ≼ (1...𝑀)) → (1...𝑀) ≈ (𝑃 “ {0}))
178166, 176, 177syl2anc 584 . . 3 (𝑀 ∈ ℕ → (1...𝑀) ≈ (𝑃 “ {0}))
179 f1finf1o 9046 . . 3 (((1...𝑀) ≈ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ∈ Fin) → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
180178, 164, 179syl2anc 584 . 2 (𝑀 ∈ ℕ → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
181152, 180mpbid 231 1 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cen 8730  cdom 8731  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  +crp 12730  (,)cioo 13079  ...cfz 13239  cexp 13782  Ccbc 14016  chash 14044  Σcsu 15397  sincsin 15773  cosccos 15774  tanctan 15775  πcpi 15776  0𝑝c0p 24833  Polycply 25345  coeffccoe 25347  degcdgr 25348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-0p 24834  df-limc 25030  df-dv 25031  df-ply 25349  df-idp 25350  df-coe 25351  df-dgr 25352  df-quot 25451
This theorem is referenced by:  basellem5  26234
  Copyright terms: Public domain W3C validator