MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem4 Structured version   Visualization version   GIF version

Theorem basellem4 27145
Description: Lemma for basel 27151. By basellem3 27144, the expression 𝑃((cot𝑥)↑2) = sin(𝑁𝑥) / (sin𝑥)↑𝑁 goes to zero whenever 𝑥 = 𝑛π / 𝑁 for some 𝑛 ∈ (1...𝑀), so this function enumerates 𝑀 distinct roots of a degree- 𝑀 polynomial, which must therefore be all the roots by fta1 26368. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
Assertion
Ref Expression
basellem4 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)   𝑇(𝑡,𝑗,𝑛)

Proof of Theorem basellem4
Dummy variables 𝑘 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basel.n . . . . . . . . 9 𝑁 = ((2 · 𝑀) + 1)
21basellem1 27142 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)))
3 tanrpcl 26564 . . . . . . . 8 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
42, 3syl 17 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
5 2z 12675 . . . . . . . 8 2 ∈ ℤ
6 znegcl 12678 . . . . . . . 8 (2 ∈ ℤ → -2 ∈ ℤ)
75, 6ax-mp 5 . . . . . . 7 -2 ∈ ℤ
8 rpexpcl 14131 . . . . . . 7 (((tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+ ∧ -2 ∈ ℤ) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
94, 7, 8sylancl 585 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
109rpcnd 13101 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ)
11 basel.p . . . . . . . 8 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
121, 11basellem3 27144 . . . . . . 7 ((𝑀 ∈ ℕ ∧ ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2))) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
132, 12syldan 590 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
14 elfzelz 13584 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℤ)
1514adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℤ)
1615zred 12747 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℝ)
17 pire 26518 . . . . . . . . . . . 12 π ∈ ℝ
18 remulcl 11269 . . . . . . . . . . . 12 ((𝑛 ∈ ℝ ∧ π ∈ ℝ) → (𝑛 · π) ∈ ℝ)
1916, 17, 18sylancl 585 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℝ)
2019recnd 11318 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℂ)
21 2nn 12366 . . . . . . . . . . . . . . 15 2 ∈ ℕ
22 nnmulcl 12317 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
2321, 22mpan 689 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
2423peano2nnd 12310 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
251, 24eqeltrid 2848 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2625adantr 480 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2726nncnd 12309 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℂ)
2826nnne0d 12343 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ≠ 0)
2920, 27, 28divcan2d 12072 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑁 · ((𝑛 · π) / 𝑁)) = (𝑛 · π))
3029fveq2d 6924 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = (sin‘(𝑛 · π)))
31 sinkpi 26582 . . . . . . . . 9 (𝑛 ∈ ℤ → (sin‘(𝑛 · π)) = 0)
3215, 31syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑛 · π)) = 0)
3330, 32eqtrd 2780 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = 0)
3433oveq1d 7463 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
3519, 26nndivred 12347 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ ℝ)
3635resincld 16191 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℝ)
3736recnd 11318 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℂ)
3826nnnn0d 12613 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ0)
3937, 38expcld 14196 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ∈ ℂ)
40 sincosq1sgn 26558 . . . . . . . . . . 11 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
412, 40syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
4241simpld 494 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 0 < (sin‘((𝑛 · π) / 𝑁)))
4342gt0ne0d 11854 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ≠ 0)
4426nnzd 12666 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℤ)
4537, 43, 44expne0d 14202 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ≠ 0)
4639, 45div0d 12069 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = 0)
4713, 34, 463eqtrd 2784 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)
481, 11basellem2 27143 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
4948simp1d 1142 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
50 plyf 26257 . . . . . . . 8 (𝑃 ∈ (Poly‘ℂ) → 𝑃:ℂ⟶ℂ)
51 ffn 6747 . . . . . . . 8 (𝑃:ℂ⟶ℂ → 𝑃 Fn ℂ)
5249, 50, 513syl 18 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 Fn ℂ)
5352adantr 480 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑃 Fn ℂ)
54 fniniseg 7093 . . . . . 6 (𝑃 Fn ℂ → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5553, 54syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5610, 47, 55mpbir2and 712 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}))
57 basel.t . . . 4 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
5856, 57fmptd 7148 . . 3 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶(𝑃 “ {0}))
59 fveq2 6920 . . . . . 6 (𝑘 = 𝑚 → (𝑇𝑘) = (𝑇𝑚))
60 fveq2 6920 . . . . . 6 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
61 fveq2 6920 . . . . . 6 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
6214zred 12747 . . . . . . 7 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℝ)
6362ssriv 4012 . . . . . 6 (1...𝑀) ⊆ ℝ
649rpred 13099 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ)
6564, 57fmptd 7148 . . . . . . 7 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶ℝ)
6665ffvelcdmda 7118 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇𝑘) ∈ ℝ)
67 simplr 768 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 < 𝑚)
6863sseli 4004 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℝ)
6968ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 ∈ ℝ)
7063sseli 4004 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℝ)
7170ad2antll 728 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑚 ∈ ℝ)
7217a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → π ∈ ℝ)
73 pipos 26520 . . . . . . . . . . . . . . . 16 0 < π
7473a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < π)
75 ltmul1 12144 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7669, 71, 72, 74, 75syl112anc 1374 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7767, 76mpbid 232 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) < (𝑚 · π))
78 remulcl 11269 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ π ∈ ℝ) → (𝑘 · π) ∈ ℝ)
7969, 17, 78sylancl 585 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) ∈ ℝ)
80 remulcl 11269 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ π ∈ ℝ) → (𝑚 · π) ∈ ℝ)
8171, 17, 80sylancl 585 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑚 · π) ∈ ℝ)
8225ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℕ)
8382nnred 12308 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℝ)
8482nngt0d 12342 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < 𝑁)
85 ltdiv1 12159 . . . . . . . . . . . . . 14 (((𝑘 · π) ∈ ℝ ∧ (𝑚 · π) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8679, 81, 83, 84, 85syl112anc 1374 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8777, 86mpbid 232 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁))
88 neghalfpirx 26526 . . . . . . . . . . . . . . 15 -(π / 2) ∈ ℝ*
89 pirp 26521 . . . . . . . . . . . . . . . . 17 π ∈ ℝ+
90 rphalfcl 13084 . . . . . . . . . . . . . . . . 17 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
91 rpge0 13070 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
9289, 90, 91mp2b 10 . . . . . . . . . . . . . . . 16 0 ≤ (π / 2)
93 halfpire 26524 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
94 le0neg2 11799 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ → (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . 16 (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0)
9692, 95mpbi 230 . . . . . . . . . . . . . . 15 -(π / 2) ≤ 0
97 iooss1 13442 . . . . . . . . . . . . . . 15 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
9888, 96, 97mp2an 691 . . . . . . . . . . . . . 14 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
991basellem1 27142 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10099ad2ant2r 746 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10198, 100sselid 4006 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
1021basellem1 27142 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑚 ∈ (1...𝑀)) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
103102ad2ant2rl 748 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
10498, 103sselid 4006 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
105 tanord 26598 . . . . . . . . . . . . 13 ((((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)) ∧ ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
106101, 104, 105syl2anc 583 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
10787, 106mpbid 232 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)))
108 tanrpcl 26564 . . . . . . . . . . . . 13 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
109100, 108syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
110 tanrpcl 26564 . . . . . . . . . . . . 13 (((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
111103, 110syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
112 rprege0 13072 . . . . . . . . . . . . 13 ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))))
113 rprege0 13072 . . . . . . . . . . . . 13 ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁))))
114 lt2sq 14183 . . . . . . . . . . . . 13 ((((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))) ∧ ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁)))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
115112, 113, 114syl2an 595 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
116109, 111, 115syl2anc 583 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
117107, 116mpbid 232 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2))
118 rpexpcl 14131 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
119109, 5, 118sylancl 585 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
120 rpexpcl 14131 . . . . . . . . . . . 12 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
121111, 5, 120sylancl 585 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
122119, 121ltrecd 13117 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2) ↔ (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
123117, 122mpbid 232 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
124 oveq1 7455 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑛 · π) = (𝑚 · π))
125124fvoveq1d 7470 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑚 · π) / 𝑁)))
126125oveq1d 7463 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
127 ovex 7481 . . . . . . . . . . . 12 ((tan‘((𝑚 · π) / 𝑁))↑-2) ∈ V
128126, 57, 127fvmpt 7029 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑀) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
129128ad2antll 728 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
130111rpcnd 13101 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℂ)
131 2nn0 12570 . . . . . . . . . . 11 2 ∈ ℕ0
132 expneg 14120 . . . . . . . . . . 11 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
133130, 131, 132sylancl 585 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
134129, 133eqtrd 2780 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
135 oveq1 7455 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
136135fvoveq1d 7470 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁)))
137136oveq1d 7463 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
138 ovex 7481 . . . . . . . . . . . 12 ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ V
139137, 57, 138fvmpt 7029 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑀) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
140139ad2antrl 727 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
141109rpcnd 13101 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ)
142 expneg 14120 . . . . . . . . . . 11 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
143141, 131, 142sylancl 585 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
144140, 143eqtrd 2780 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
145123, 134, 1443brtr4d 5198 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) < (𝑇𝑘))
146145an32s 651 . . . . . . 7 (((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) ∧ 𝑘 < 𝑚) → (𝑇𝑚) < (𝑇𝑘))
147146ex 412 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 → (𝑇𝑚) < (𝑇𝑘)))
14859, 60, 61, 63, 66, 147eqord2 11821 . . . . 5 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → (𝑥 = 𝑦 ↔ (𝑇𝑥) = (𝑇𝑦)))
149148biimprd 248 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
150149ralrimivva 3208 . . 3 (𝑀 ∈ ℕ → ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
151 dff13 7292 . . 3 (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ (𝑇:(1...𝑀)⟶(𝑃 “ {0}) ∧ ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
15258, 150, 151sylanbrc 582 . 2 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1→(𝑃 “ {0}))
15348simp2d 1143 . . . . . . . . 9 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
154 nnne0 12327 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
155153, 154eqnetrd 3014 . . . . . . . 8 (𝑀 ∈ ℕ → (deg‘𝑃) ≠ 0)
156 fveq2 6920 . . . . . . . . . 10 (𝑃 = 0𝑝 → (deg‘𝑃) = (deg‘0𝑝))
157 dgr0 26322 . . . . . . . . . 10 (deg‘0𝑝) = 0
158156, 157eqtrdi 2796 . . . . . . . . 9 (𝑃 = 0𝑝 → (deg‘𝑃) = 0)
159158necon3i 2979 . . . . . . . 8 ((deg‘𝑃) ≠ 0 → 𝑃 ≠ 0𝑝)
160155, 159syl 17 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 ≠ 0𝑝)
161 eqid 2740 . . . . . . . 8 (𝑃 “ {0}) = (𝑃 “ {0})
162161fta1 26368 . . . . . . 7 ((𝑃 ∈ (Poly‘ℂ) ∧ 𝑃 ≠ 0𝑝) → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
16349, 160, 162syl2anc 583 . . . . . 6 (𝑀 ∈ ℕ → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
164163simpld 494 . . . . 5 (𝑀 ∈ ℕ → (𝑃 “ {0}) ∈ Fin)
165 f1domg 9032 . . . . 5 ((𝑃 “ {0}) ∈ Fin → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) → (1...𝑀) ≼ (𝑃 “ {0})))
166164, 152, 165sylc 65 . . . 4 (𝑀 ∈ ℕ → (1...𝑀) ≼ (𝑃 “ {0}))
167163simprd 495 . . . . . 6 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃))
168 nnnn0 12560 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
169 hashfz1 14395 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
170168, 169syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
171153, 170eqtr4d 2783 . . . . . 6 (𝑀 ∈ ℕ → (deg‘𝑃) = (♯‘(1...𝑀)))
172167, 171breqtrd 5192 . . . . 5 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)))
173 fzfid 14024 . . . . . 6 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
174 hashdom 14428 . . . . . 6 (((𝑃 “ {0}) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
175164, 173, 174syl2anc 583 . . . . 5 (𝑀 ∈ ℕ → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
176172, 175mpbid 232 . . . 4 (𝑀 ∈ ℕ → (𝑃 “ {0}) ≼ (1...𝑀))
177 sbth 9159 . . . 4 (((1...𝑀) ≼ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ≼ (1...𝑀)) → (1...𝑀) ≈ (𝑃 “ {0}))
178166, 176, 177syl2anc 583 . . 3 (𝑀 ∈ ℕ → (1...𝑀) ≈ (𝑃 “ {0}))
179 f1finf1o 9333 . . 3 (((1...𝑀) ≈ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ∈ Fin) → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
180178, 164, 179syl2anc 583 . 2 (𝑀 ∈ ℕ → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
181152, 180mpbid 232 1 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cen 9000  cdom 9001  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  +crp 13057  (,)cioo 13407  ...cfz 13567  cexp 14112  Ccbc 14351  chash 14379  Σcsu 15734  sincsin 16111  cosccos 16112  tanctan 16113  πcpi 16114  0𝑝c0p 25723  Polycply 26243  coeffccoe 26245  degcdgr 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-0p 25724  df-limc 25921  df-dv 25922  df-ply 26247  df-idp 26248  df-coe 26249  df-dgr 26250  df-quot 26351
This theorem is referenced by:  basellem5  27146
  Copyright terms: Public domain W3C validator