Step | Hyp | Ref
| Expression |
1 | | basel.n |
. . . . . . . . 9
β’ π = ((2 Β· π) + 1) |
2 | 1 | basellem1 26928 |
. . . . . . . 8
β’ ((π β β β§ π β (1...π)) β ((π Β· Ο) / π) β (0(,)(Ο / 2))) |
3 | | tanrpcl 26355 |
. . . . . . . 8
β’ (((π Β· Ο) / π) β (0(,)(Ο / 2)) β
(tanβ((π Β·
Ο) / π)) β
β+) |
4 | 2, 3 | syl 17 |
. . . . . . 7
β’ ((π β β β§ π β (1...π)) β (tanβ((π Β· Ο) / π)) β
β+) |
5 | | 2z 12590 |
. . . . . . . 8
β’ 2 β
β€ |
6 | | znegcl 12593 |
. . . . . . . 8
β’ (2 β
β€ β -2 β β€) |
7 | 5, 6 | ax-mp 5 |
. . . . . . 7
β’ -2 β
β€ |
8 | | rpexpcl 14042 |
. . . . . . 7
β’
(((tanβ((π
Β· Ο) / π)) β
β+ β§ -2 β β€) β ((tanβ((π Β· Ο) / π))β-2) β
β+) |
9 | 4, 7, 8 | sylancl 585 |
. . . . . 6
β’ ((π β β β§ π β (1...π)) β ((tanβ((π Β· Ο) / π))β-2) β
β+) |
10 | 9 | rpcnd 13014 |
. . . . 5
β’ ((π β β β§ π β (1...π)) β ((tanβ((π Β· Ο) / π))β-2) β β) |
11 | | basel.p |
. . . . . . . 8
β’ π = (π‘ β β β¦ Ξ£π β (0...π)(((πC(2 Β· π)) Β· (-1β(π β π))) Β· (π‘βπ))) |
12 | 1, 11 | basellem3 26930 |
. . . . . . 7
β’ ((π β β β§ ((π Β· Ο) / π) β (0(,)(Ο / 2)))
β (πβ((tanβ((π Β· Ο) / π))β-2)) = ((sinβ(π Β· ((π Β· Ο) / π))) / ((sinβ((π Β· Ο) / π))βπ))) |
13 | 2, 12 | syldan 590 |
. . . . . 6
β’ ((π β β β§ π β (1...π)) β (πβ((tanβ((π Β· Ο) / π))β-2)) = ((sinβ(π Β· ((π Β· Ο) / π))) / ((sinβ((π Β· Ο) / π))βπ))) |
14 | | elfzelz 13497 |
. . . . . . . . . . . . . 14
β’ (π β (1...π) β π β β€) |
15 | 14 | adantl 481 |
. . . . . . . . . . . . 13
β’ ((π β β β§ π β (1...π)) β π β β€) |
16 | 15 | zred 12662 |
. . . . . . . . . . . 12
β’ ((π β β β§ π β (1...π)) β π β β) |
17 | | pire 26309 |
. . . . . . . . . . . 12
β’ Ο
β β |
18 | | remulcl 11190 |
. . . . . . . . . . . 12
β’ ((π β β β§ Ο
β β) β (π
Β· Ο) β β) |
19 | 16, 17, 18 | sylancl 585 |
. . . . . . . . . . 11
β’ ((π β β β§ π β (1...π)) β (π Β· Ο) β
β) |
20 | 19 | recnd 11238 |
. . . . . . . . . 10
β’ ((π β β β§ π β (1...π)) β (π Β· Ο) β
β) |
21 | | 2nn 12281 |
. . . . . . . . . . . . . . 15
β’ 2 β
β |
22 | | nnmulcl 12232 |
. . . . . . . . . . . . . . 15
β’ ((2
β β β§ π
β β) β (2 Β· π) β β) |
23 | 21, 22 | mpan 687 |
. . . . . . . . . . . . . 14
β’ (π β β β (2
Β· π) β
β) |
24 | 23 | peano2nnd 12225 |
. . . . . . . . . . . . 13
β’ (π β β β ((2
Β· π) + 1) β
β) |
25 | 1, 24 | eqeltrid 2829 |
. . . . . . . . . . . 12
β’ (π β β β π β
β) |
26 | 25 | adantr 480 |
. . . . . . . . . . 11
β’ ((π β β β§ π β (1...π)) β π β β) |
27 | 26 | nncnd 12224 |
. . . . . . . . . 10
β’ ((π β β β§ π β (1...π)) β π β β) |
28 | 26 | nnne0d 12258 |
. . . . . . . . . 10
β’ ((π β β β§ π β (1...π)) β π β 0) |
29 | 20, 27, 28 | divcan2d 11988 |
. . . . . . . . 9
β’ ((π β β β§ π β (1...π)) β (π Β· ((π Β· Ο) / π)) = (π Β· Ο)) |
30 | 29 | fveq2d 6885 |
. . . . . . . 8
β’ ((π β β β§ π β (1...π)) β (sinβ(π Β· ((π Β· Ο) / π))) = (sinβ(π Β· Ο))) |
31 | | sinkpi 26372 |
. . . . . . . . 9
β’ (π β β€ β
(sinβ(π Β·
Ο)) = 0) |
32 | 15, 31 | syl 17 |
. . . . . . . 8
β’ ((π β β β§ π β (1...π)) β (sinβ(π Β· Ο)) = 0) |
33 | 30, 32 | eqtrd 2764 |
. . . . . . 7
β’ ((π β β β§ π β (1...π)) β (sinβ(π Β· ((π Β· Ο) / π))) = 0) |
34 | 33 | oveq1d 7416 |
. . . . . 6
β’ ((π β β β§ π β (1...π)) β ((sinβ(π Β· ((π Β· Ο) / π))) / ((sinβ((π Β· Ο) / π))βπ)) = (0 / ((sinβ((π Β· Ο) / π))βπ))) |
35 | 19, 26 | nndivred 12262 |
. . . . . . . . . 10
β’ ((π β β β§ π β (1...π)) β ((π Β· Ο) / π) β β) |
36 | 35 | resincld 16082 |
. . . . . . . . 9
β’ ((π β β β§ π β (1...π)) β (sinβ((π Β· Ο) / π)) β β) |
37 | 36 | recnd 11238 |
. . . . . . . 8
β’ ((π β β β§ π β (1...π)) β (sinβ((π Β· Ο) / π)) β β) |
38 | 26 | nnnn0d 12528 |
. . . . . . . 8
β’ ((π β β β§ π β (1...π)) β π β
β0) |
39 | 37, 38 | expcld 14107 |
. . . . . . 7
β’ ((π β β β§ π β (1...π)) β ((sinβ((π Β· Ο) / π))βπ) β β) |
40 | | sincosq1sgn 26349 |
. . . . . . . . . . 11
β’ (((π Β· Ο) / π) β (0(,)(Ο / 2)) β
(0 < (sinβ((π
Β· Ο) / π)) β§
0 < (cosβ((π
Β· Ο) / π)))) |
41 | 2, 40 | syl 17 |
. . . . . . . . . 10
β’ ((π β β β§ π β (1...π)) β (0 < (sinβ((π Β· Ο) / π)) β§ 0 <
(cosβ((π Β·
Ο) / π)))) |
42 | 41 | simpld 494 |
. . . . . . . . 9
β’ ((π β β β§ π β (1...π)) β 0 < (sinβ((π Β· Ο) / π))) |
43 | 42 | gt0ne0d 11774 |
. . . . . . . 8
β’ ((π β β β§ π β (1...π)) β (sinβ((π Β· Ο) / π)) β 0) |
44 | 26 | nnzd 12581 |
. . . . . . . 8
β’ ((π β β β§ π β (1...π)) β π β β€) |
45 | 37, 43, 44 | expne0d 14113 |
. . . . . . 7
β’ ((π β β β§ π β (1...π)) β ((sinβ((π Β· Ο) / π))βπ) β 0) |
46 | 39, 45 | div0d 11985 |
. . . . . 6
β’ ((π β β β§ π β (1...π)) β (0 / ((sinβ((π Β· Ο) / π))βπ)) = 0) |
47 | 13, 34, 46 | 3eqtrd 2768 |
. . . . 5
β’ ((π β β β§ π β (1...π)) β (πβ((tanβ((π Β· Ο) / π))β-2)) = 0) |
48 | 1, 11 | basellem2 26929 |
. . . . . . . . 9
β’ (π β β β (π β (Polyββ)
β§ (degβπ) = π β§ (coeffβπ) = (π β β0 β¦ ((πC(2 Β· π)) Β· (-1β(π β π)))))) |
49 | 48 | simp1d 1139 |
. . . . . . . 8
β’ (π β β β π β
(Polyββ)) |
50 | | plyf 26051 |
. . . . . . . 8
β’ (π β (Polyββ)
β π:ββΆβ) |
51 | | ffn 6707 |
. . . . . . . 8
β’ (π:ββΆβ β
π Fn
β) |
52 | 49, 50, 51 | 3syl 18 |
. . . . . . 7
β’ (π β β β π Fn β) |
53 | 52 | adantr 480 |
. . . . . 6
β’ ((π β β β§ π β (1...π)) β π Fn β) |
54 | | fniniseg 7051 |
. . . . . 6
β’ (π Fn β β
(((tanβ((π Β·
Ο) / π))β-2) β
(β‘π β {0}) β (((tanβ((π Β· Ο) / π))β-2) β β β§
(πβ((tanβ((π Β· Ο) / π))β-2)) = 0))) |
55 | 53, 54 | syl 17 |
. . . . 5
β’ ((π β β β§ π β (1...π)) β (((tanβ((π Β· Ο) / π))β-2) β (β‘π β {0}) β (((tanβ((π Β· Ο) / π))β-2) β β β§
(πβ((tanβ((π Β· Ο) / π))β-2)) = 0))) |
56 | 10, 47, 55 | mpbir2and 710 |
. . . 4
β’ ((π β β β§ π β (1...π)) β ((tanβ((π Β· Ο) / π))β-2) β (β‘π β {0})) |
57 | | basel.t |
. . . 4
β’ π = (π β (1...π) β¦ ((tanβ((π Β· Ο) / π))β-2)) |
58 | 56, 57 | fmptd 7105 |
. . 3
β’ (π β β β π:(1...π)βΆ(β‘π β {0})) |
59 | | fveq2 6881 |
. . . . . 6
β’ (π = π β (πβπ) = (πβπ)) |
60 | | fveq2 6881 |
. . . . . 6
β’ (π = π₯ β (πβπ) = (πβπ₯)) |
61 | | fveq2 6881 |
. . . . . 6
β’ (π = π¦ β (πβπ) = (πβπ¦)) |
62 | 14 | zred 12662 |
. . . . . . 7
β’ (π β (1...π) β π β β) |
63 | 62 | ssriv 3978 |
. . . . . 6
β’
(1...π) β
β |
64 | 9 | rpred 13012 |
. . . . . . . 8
β’ ((π β β β§ π β (1...π)) β ((tanβ((π Β· Ο) / π))β-2) β β) |
65 | 64, 57 | fmptd 7105 |
. . . . . . 7
β’ (π β β β π:(1...π)βΆβ) |
66 | 65 | ffvelcdmda 7076 |
. . . . . 6
β’ ((π β β β§ π β (1...π)) β (πβπ) β β) |
67 | | simplr 766 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β π < π) |
68 | 63 | sseli 3970 |
. . . . . . . . . . . . . . . 16
β’ (π β (1...π) β π β β) |
69 | 68 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β π β β) |
70 | 63 | sseli 3970 |
. . . . . . . . . . . . . . . 16
β’ (π β (1...π) β π β β) |
71 | 70 | ad2antll 726 |
. . . . . . . . . . . . . . 15
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β π β β) |
72 | 17 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β Ο β
β) |
73 | | pipos 26311 |
. . . . . . . . . . . . . . . 16
β’ 0 <
Ο |
74 | 73 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β 0 < Ο) |
75 | | ltmul1 12060 |
. . . . . . . . . . . . . . 15
β’ ((π β β β§ π β β β§ (Ο
β β β§ 0 < Ο)) β (π < π β (π Β· Ο) < (π Β· Ο))) |
76 | 69, 71, 72, 74, 75 | syl112anc 1371 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (π < π β (π Β· Ο) < (π Β· Ο))) |
77 | 67, 76 | mpbid 231 |
. . . . . . . . . . . . 13
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (π Β· Ο) < (π Β· Ο)) |
78 | | remulcl 11190 |
. . . . . . . . . . . . . . 15
β’ ((π β β β§ Ο
β β) β (π
Β· Ο) β β) |
79 | 69, 17, 78 | sylancl 585 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (π Β· Ο) β
β) |
80 | | remulcl 11190 |
. . . . . . . . . . . . . . 15
β’ ((π β β β§ Ο
β β) β (π
Β· Ο) β β) |
81 | 71, 17, 80 | sylancl 585 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (π Β· Ο) β
β) |
82 | 25 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β π β β) |
83 | 82 | nnred 12223 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β π β β) |
84 | 82 | nngt0d 12257 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β 0 < π) |
85 | | ltdiv1 12074 |
. . . . . . . . . . . . . 14
β’ (((π Β· Ο) β β
β§ (π Β· Ο)
β β β§ (π
β β β§ 0 < π)) β ((π Β· Ο) < (π Β· Ο) β ((π Β· Ο) / π) < ((π Β· Ο) / π))) |
86 | 79, 81, 83, 84, 85 | syl112anc 1371 |
. . . . . . . . . . . . 13
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((π Β· Ο) < (π Β· Ο) β ((π Β· Ο) / π) < ((π Β· Ο) / π))) |
87 | 77, 86 | mpbid 231 |
. . . . . . . . . . . 12
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((π Β· Ο) / π) < ((π Β· Ο) / π)) |
88 | | neghalfpirx 26317 |
. . . . . . . . . . . . . . 15
β’ -(Ο /
2) β β* |
89 | | pirp 26312 |
. . . . . . . . . . . . . . . . 17
β’ Ο
β β+ |
90 | | rphalfcl 12997 |
. . . . . . . . . . . . . . . . 17
β’ (Ο
β β+ β (Ο / 2) β
β+) |
91 | | rpge0 12983 |
. . . . . . . . . . . . . . . . 17
β’ ((Ο /
2) β β+ β 0 β€ (Ο / 2)) |
92 | 89, 90, 91 | mp2b 10 |
. . . . . . . . . . . . . . . 16
β’ 0 β€
(Ο / 2) |
93 | | halfpire 26315 |
. . . . . . . . . . . . . . . . 17
β’ (Ο /
2) β β |
94 | | le0neg2 11719 |
. . . . . . . . . . . . . . . . 17
β’ ((Ο /
2) β β β (0 β€ (Ο / 2) β -(Ο / 2) β€
0)) |
95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
β’ (0 β€
(Ο / 2) β -(Ο / 2) β€ 0) |
96 | 92, 95 | mpbi 229 |
. . . . . . . . . . . . . . 15
β’ -(Ο /
2) β€ 0 |
97 | | iooss1 13355 |
. . . . . . . . . . . . . . 15
β’ ((-(Ο
/ 2) β β* β§ -(Ο / 2) β€ 0) β (0(,)(Ο /
2)) β (-(Ο / 2)(,)(Ο / 2))) |
98 | 88, 96, 97 | mp2an 689 |
. . . . . . . . . . . . . 14
β’
(0(,)(Ο / 2)) β (-(Ο / 2)(,)(Ο / 2)) |
99 | 1 | basellem1 26928 |
. . . . . . . . . . . . . . 15
β’ ((π β β β§ π β (1...π)) β ((π Β· Ο) / π) β (0(,)(Ο / 2))) |
100 | 99 | ad2ant2r 744 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((π Β· Ο) / π) β (0(,)(Ο / 2))) |
101 | 98, 100 | sselid 3972 |
. . . . . . . . . . . . 13
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((π Β· Ο) / π) β (-(Ο / 2)(,)(Ο /
2))) |
102 | 1 | basellem1 26928 |
. . . . . . . . . . . . . . 15
β’ ((π β β β§ π β (1...π)) β ((π Β· Ο) / π) β (0(,)(Ο / 2))) |
103 | 102 | ad2ant2rl 746 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((π Β· Ο) / π) β (0(,)(Ο / 2))) |
104 | 98, 103 | sselid 3972 |
. . . . . . . . . . . . 13
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((π Β· Ο) / π) β (-(Ο / 2)(,)(Ο /
2))) |
105 | | tanord 26388 |
. . . . . . . . . . . . 13
β’ ((((π Β· Ο) / π) β (-(Ο / 2)(,)(Ο /
2)) β§ ((π Β·
Ο) / π) β (-(Ο /
2)(,)(Ο / 2))) β (((π Β· Ο) / π) < ((π Β· Ο) / π) β (tanβ((π Β· Ο) / π)) < (tanβ((π Β· Ο) / π)))) |
106 | 101, 104,
105 | syl2anc 583 |
. . . . . . . . . . . 12
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (((π Β· Ο) / π) < ((π Β· Ο) / π) β (tanβ((π Β· Ο) / π)) < (tanβ((π Β· Ο) / π)))) |
107 | 87, 106 | mpbid 231 |
. . . . . . . . . . 11
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (tanβ((π Β· Ο) / π)) < (tanβ((π Β· Ο) / π))) |
108 | | tanrpcl 26355 |
. . . . . . . . . . . . 13
β’ (((π Β· Ο) / π) β (0(,)(Ο / 2)) β
(tanβ((π Β·
Ο) / π)) β
β+) |
109 | 100, 108 | syl 17 |
. . . . . . . . . . . 12
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (tanβ((π Β· Ο) / π)) β
β+) |
110 | | tanrpcl 26355 |
. . . . . . . . . . . . 13
β’ (((π Β· Ο) / π) β (0(,)(Ο / 2)) β
(tanβ((π Β·
Ο) / π)) β
β+) |
111 | 103, 110 | syl 17 |
. . . . . . . . . . . 12
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (tanβ((π Β· Ο) / π)) β
β+) |
112 | | rprege0 12985 |
. . . . . . . . . . . . 13
β’
((tanβ((π
Β· Ο) / π)) β
β+ β ((tanβ((π Β· Ο) / π)) β β β§ 0 β€
(tanβ((π Β·
Ο) / π)))) |
113 | | rprege0 12985 |
. . . . . . . . . . . . 13
β’
((tanβ((π
Β· Ο) / π)) β
β+ β ((tanβ((π Β· Ο) / π)) β β β§ 0 β€
(tanβ((π Β·
Ο) / π)))) |
114 | | lt2sq 14094 |
. . . . . . . . . . . . 13
β’
((((tanβ((π
Β· Ο) / π)) β
β β§ 0 β€ (tanβ((π Β· Ο) / π))) β§ ((tanβ((π Β· Ο) / π)) β β β§ 0 β€
(tanβ((π Β·
Ο) / π)))) β
((tanβ((π Β·
Ο) / π)) <
(tanβ((π Β·
Ο) / π)) β
((tanβ((π Β·
Ο) / π))β2) <
((tanβ((π Β·
Ο) / π))β2))) |
115 | 112, 113,
114 | syl2an 595 |
. . . . . . . . . . . 12
β’
(((tanβ((π
Β· Ο) / π)) β
β+ β§ (tanβ((π Β· Ο) / π)) β β+) β
((tanβ((π Β·
Ο) / π)) <
(tanβ((π Β·
Ο) / π)) β
((tanβ((π Β·
Ο) / π))β2) <
((tanβ((π Β·
Ο) / π))β2))) |
116 | 109, 111,
115 | syl2anc 583 |
. . . . . . . . . . 11
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((tanβ((π Β· Ο) / π)) < (tanβ((π Β· Ο) / π)) β ((tanβ((π Β· Ο) / π))β2) < ((tanβ((π Β· Ο) / π))β2))) |
117 | 107, 116 | mpbid 231 |
. . . . . . . . . 10
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((tanβ((π Β· Ο) / π))β2) < ((tanβ((π Β· Ο) / π))β2)) |
118 | | rpexpcl 14042 |
. . . . . . . . . . . 12
β’
(((tanβ((π
Β· Ο) / π)) β
β+ β§ 2 β β€) β ((tanβ((π Β· Ο) / π))β2) β
β+) |
119 | 109, 5, 118 | sylancl 585 |
. . . . . . . . . . 11
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((tanβ((π Β· Ο) / π))β2) β
β+) |
120 | | rpexpcl 14042 |
. . . . . . . . . . . 12
β’
(((tanβ((π
Β· Ο) / π)) β
β+ β§ 2 β β€) β ((tanβ((π Β· Ο) / π))β2) β
β+) |
121 | 111, 5, 120 | sylancl 585 |
. . . . . . . . . . 11
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((tanβ((π Β· Ο) / π))β2) β
β+) |
122 | 119, 121 | ltrecd 13030 |
. . . . . . . . . 10
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (((tanβ((π Β· Ο) / π))β2) < ((tanβ((π Β· Ο) / π))β2) β (1 /
((tanβ((π Β·
Ο) / π))β2)) <
(1 / ((tanβ((π
Β· Ο) / π))β2)))) |
123 | 117, 122 | mpbid 231 |
. . . . . . . . 9
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (1 / ((tanβ((π Β· Ο) / π))β2)) < (1 /
((tanβ((π Β·
Ο) / π))β2))) |
124 | | oveq1 7408 |
. . . . . . . . . . . . . 14
β’ (π = π β (π Β· Ο) = (π Β· Ο)) |
125 | 124 | fvoveq1d 7423 |
. . . . . . . . . . . . 13
β’ (π = π β (tanβ((π Β· Ο) / π)) = (tanβ((π Β· Ο) / π))) |
126 | 125 | oveq1d 7416 |
. . . . . . . . . . . 12
β’ (π = π β ((tanβ((π Β· Ο) / π))β-2) = ((tanβ((π Β· Ο) / π))β-2)) |
127 | | ovex 7434 |
. . . . . . . . . . . 12
β’
((tanβ((π
Β· Ο) / π))β-2) β V |
128 | 126, 57, 127 | fvmpt 6988 |
. . . . . . . . . . 11
β’ (π β (1...π) β (πβπ) = ((tanβ((π Β· Ο) / π))β-2)) |
129 | 128 | ad2antll 726 |
. . . . . . . . . 10
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (πβπ) = ((tanβ((π Β· Ο) / π))β-2)) |
130 | 111 | rpcnd 13014 |
. . . . . . . . . . 11
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (tanβ((π Β· Ο) / π)) β β) |
131 | | 2nn0 12485 |
. . . . . . . . . . 11
β’ 2 β
β0 |
132 | | expneg 14031 |
. . . . . . . . . . 11
β’
(((tanβ((π
Β· Ο) / π)) β
β β§ 2 β β0) β ((tanβ((π Β· Ο) / π))β-2) = (1 /
((tanβ((π Β·
Ο) / π))β2))) |
133 | 130, 131,
132 | sylancl 585 |
. . . . . . . . . 10
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((tanβ((π Β· Ο) / π))β-2) = (1 / ((tanβ((π Β· Ο) / π))β2))) |
134 | 129, 133 | eqtrd 2764 |
. . . . . . . . 9
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (πβπ) = (1 / ((tanβ((π Β· Ο) / π))β2))) |
135 | | oveq1 7408 |
. . . . . . . . . . . . . 14
β’ (π = π β (π Β· Ο) = (π Β· Ο)) |
136 | 135 | fvoveq1d 7423 |
. . . . . . . . . . . . 13
β’ (π = π β (tanβ((π Β· Ο) / π)) = (tanβ((π Β· Ο) / π))) |
137 | 136 | oveq1d 7416 |
. . . . . . . . . . . 12
β’ (π = π β ((tanβ((π Β· Ο) / π))β-2) = ((tanβ((π Β· Ο) / π))β-2)) |
138 | | ovex 7434 |
. . . . . . . . . . . 12
β’
((tanβ((π
Β· Ο) / π))β-2) β V |
139 | 137, 57, 138 | fvmpt 6988 |
. . . . . . . . . . 11
β’ (π β (1...π) β (πβπ) = ((tanβ((π Β· Ο) / π))β-2)) |
140 | 139 | ad2antrl 725 |
. . . . . . . . . 10
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (πβπ) = ((tanβ((π Β· Ο) / π))β-2)) |
141 | 109 | rpcnd 13014 |
. . . . . . . . . . 11
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (tanβ((π Β· Ο) / π)) β β) |
142 | | expneg 14031 |
. . . . . . . . . . 11
β’
(((tanβ((π
Β· Ο) / π)) β
β β§ 2 β β0) β ((tanβ((π Β· Ο) / π))β-2) = (1 /
((tanβ((π Β·
Ο) / π))β2))) |
143 | 141, 131,
142 | sylancl 585 |
. . . . . . . . . 10
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β ((tanβ((π Β· Ο) / π))β-2) = (1 / ((tanβ((π Β· Ο) / π))β2))) |
144 | 140, 143 | eqtrd 2764 |
. . . . . . . . 9
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (πβπ) = (1 / ((tanβ((π Β· Ο) / π))β2))) |
145 | 123, 134,
144 | 3brtr4d 5170 |
. . . . . . . 8
β’ (((π β β β§ π < π) β§ (π β (1...π) β§ π β (1...π))) β (πβπ) < (πβπ)) |
146 | 145 | an32s 649 |
. . . . . . 7
β’ (((π β β β§ (π β (1...π) β§ π β (1...π))) β§ π < π) β (πβπ) < (πβπ)) |
147 | 146 | ex 412 |
. . . . . 6
β’ ((π β β β§ (π β (1...π) β§ π β (1...π))) β (π < π β (πβπ) < (πβπ))) |
148 | 59, 60, 61, 63, 66, 147 | eqord2 11741 |
. . . . 5
β’ ((π β β β§ (π₯ β (1...π) β§ π¦ β (1...π))) β (π₯ = π¦ β (πβπ₯) = (πβπ¦))) |
149 | 148 | biimprd 247 |
. . . 4
β’ ((π β β β§ (π₯ β (1...π) β§ π¦ β (1...π))) β ((πβπ₯) = (πβπ¦) β π₯ = π¦)) |
150 | 149 | ralrimivva 3192 |
. . 3
β’ (π β β β
βπ₯ β (1...π)βπ¦ β (1...π)((πβπ₯) = (πβπ¦) β π₯ = π¦)) |
151 | | dff13 7246 |
. . 3
β’ (π:(1...π)β1-1β(β‘π β {0}) β (π:(1...π)βΆ(β‘π β {0}) β§ βπ₯ β (1...π)βπ¦ β (1...π)((πβπ₯) = (πβπ¦) β π₯ = π¦))) |
152 | 58, 150, 151 | sylanbrc 582 |
. 2
β’ (π β β β π:(1...π)β1-1β(β‘π β {0})) |
153 | 48 | simp2d 1140 |
. . . . . . . . 9
β’ (π β β β
(degβπ) = π) |
154 | | nnne0 12242 |
. . . . . . . . 9
β’ (π β β β π β 0) |
155 | 153, 154 | eqnetrd 3000 |
. . . . . . . 8
β’ (π β β β
(degβπ) β
0) |
156 | | fveq2 6881 |
. . . . . . . . . 10
β’ (π = 0π β
(degβπ) =
(degβ0π)) |
157 | | dgr0 26116 |
. . . . . . . . . 10
β’
(degβ0π) = 0 |
158 | 156, 157 | eqtrdi 2780 |
. . . . . . . . 9
β’ (π = 0π β
(degβπ) =
0) |
159 | 158 | necon3i 2965 |
. . . . . . . 8
β’
((degβπ) β
0 β π β
0π) |
160 | 155, 159 | syl 17 |
. . . . . . 7
β’ (π β β β π β
0π) |
161 | | eqid 2724 |
. . . . . . . 8
β’ (β‘π β {0}) = (β‘π β {0}) |
162 | 161 | fta1 26161 |
. . . . . . 7
β’ ((π β (Polyββ)
β§ π β
0π) β ((β‘π β {0}) β Fin β§
(β―β(β‘π β {0})) β€ (degβπ))) |
163 | 49, 160, 162 | syl2anc 583 |
. . . . . 6
β’ (π β β β ((β‘π β {0}) β Fin β§
(β―β(β‘π β {0})) β€ (degβπ))) |
164 | 163 | simpld 494 |
. . . . 5
β’ (π β β β (β‘π β {0}) β Fin) |
165 | | f1domg 8963 |
. . . . 5
β’ ((β‘π β {0}) β Fin β (π:(1...π)β1-1β(β‘π β {0}) β (1...π) βΌ (β‘π β {0}))) |
166 | 164, 152,
165 | sylc 65 |
. . . 4
β’ (π β β β
(1...π) βΌ (β‘π β {0})) |
167 | 163 | simprd 495 |
. . . . . 6
β’ (π β β β
(β―β(β‘π β {0})) β€ (degβπ)) |
168 | | nnnn0 12475 |
. . . . . . . 8
β’ (π β β β π β
β0) |
169 | | hashfz1 14302 |
. . . . . . . 8
β’ (π β β0
β (β―β(1...π)) = π) |
170 | 168, 169 | syl 17 |
. . . . . . 7
β’ (π β β β
(β―β(1...π)) =
π) |
171 | 153, 170 | eqtr4d 2767 |
. . . . . 6
β’ (π β β β
(degβπ) =
(β―β(1...π))) |
172 | 167, 171 | breqtrd 5164 |
. . . . 5
β’ (π β β β
(β―β(β‘π β {0})) β€
(β―β(1...π))) |
173 | | fzfid 13934 |
. . . . . 6
β’ (π β β β
(1...π) β
Fin) |
174 | | hashdom 14335 |
. . . . . 6
β’ (((β‘π β {0}) β Fin β§ (1...π) β Fin) β
((β―β(β‘π β {0})) β€
(β―β(1...π))
β (β‘π β {0}) βΌ (1...π))) |
175 | 164, 173,
174 | syl2anc 583 |
. . . . 5
β’ (π β β β
((β―β(β‘π β {0})) β€
(β―β(1...π))
β (β‘π β {0}) βΌ (1...π))) |
176 | 172, 175 | mpbid 231 |
. . . 4
β’ (π β β β (β‘π β {0}) βΌ (1...π)) |
177 | | sbth 9088 |
. . . 4
β’
(((1...π) βΌ
(β‘π β {0}) β§ (β‘π β {0}) βΌ (1...π)) β (1...π) β (β‘π β {0})) |
178 | 166, 176,
177 | syl2anc 583 |
. . 3
β’ (π β β β
(1...π) β (β‘π β {0})) |
179 | | f1finf1o 9266 |
. . 3
β’
(((1...π) β
(β‘π β {0}) β§ (β‘π β {0}) β Fin) β (π:(1...π)β1-1β(β‘π β {0}) β π:(1...π)β1-1-ontoβ(β‘π β {0}))) |
180 | 178, 164,
179 | syl2anc 583 |
. 2
β’ (π β β β (π:(1...π)β1-1β(β‘π β {0}) β π:(1...π)β1-1-ontoβ(β‘π β {0}))) |
181 | 152, 180 | mpbid 231 |
1
β’ (π β β β π:(1...π)β1-1-ontoβ(β‘π β {0})) |