| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | basel.n | . . . . . . . . 9
⊢ 𝑁 = ((2 · 𝑀) + 1) | 
| 2 | 1 | basellem1 27125 | . . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2))) | 
| 3 |  | tanrpcl 26547 | . . . . . . . 8
⊢ (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) →
(tan‘((𝑛 ·
π) / 𝑁)) ∈
ℝ+) | 
| 4 | 2, 3 | syl 17 | . . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (tan‘((𝑛 · π) / 𝑁)) ∈
ℝ+) | 
| 5 |  | 2z 12651 | . . . . . . . 8
⊢ 2 ∈
ℤ | 
| 6 |  | znegcl 12654 | . . . . . . . 8
⊢ (2 ∈
ℤ → -2 ∈ ℤ) | 
| 7 | 5, 6 | ax-mp 5 | . . . . . . 7
⊢ -2 ∈
ℤ | 
| 8 |  | rpexpcl 14122 | . . . . . . 7
⊢
(((tan‘((𝑛
· π) / 𝑁)) ∈
ℝ+ ∧ -2 ∈ ℤ) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈
ℝ+) | 
| 9 | 4, 7, 8 | sylancl 586 | . . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈
ℝ+) | 
| 10 | 9 | rpcnd 13080 | . . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ) | 
| 11 |  | basel.p | . . . . . . . 8
⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) | 
| 12 | 1, 11 | basellem3 27127 | . . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)))
→ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁))) | 
| 13 | 2, 12 | syldan 591 | . . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁))) | 
| 14 |  | elfzelz 13565 | . . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℤ) | 
| 15 | 14 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℤ) | 
| 16 | 15 | zred 12724 | . . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℝ) | 
| 17 |  | pire 26501 | . . . . . . . . . . . 12
⊢ π
∈ ℝ | 
| 18 |  | remulcl 11241 | . . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℝ ∧ π
∈ ℝ) → (𝑛
· π) ∈ ℝ) | 
| 19 | 16, 17, 18 | sylancl 586 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈
ℝ) | 
| 20 | 19 | recnd 11290 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈
ℂ) | 
| 21 |  | 2nn 12340 | . . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ | 
| 22 |  | nnmulcl 12291 | . . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑀
∈ ℕ) → (2 · 𝑀) ∈ ℕ) | 
| 23 | 21, 22 | mpan 690 | . . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ∈
ℕ) | 
| 24 | 23 | peano2nnd 12284 | . . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ → ((2
· 𝑀) + 1) ∈
ℕ) | 
| 25 | 1, 24 | eqeltrid 2844 | . . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ → 𝑁 ∈
ℕ) | 
| 26 | 25 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ) | 
| 27 | 26 | nncnd 12283 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℂ) | 
| 28 | 26 | nnne0d 12317 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ≠ 0) | 
| 29 | 20, 27, 28 | divcan2d 12046 | . . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑁 · ((𝑛 · π) / 𝑁)) = (𝑛 · π)) | 
| 30 | 29 | fveq2d 6909 | . . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = (sin‘(𝑛 · π))) | 
| 31 |  | sinkpi 26565 | . . . . . . . . 9
⊢ (𝑛 ∈ ℤ →
(sin‘(𝑛 ·
π)) = 0) | 
| 32 | 15, 31 | syl 17 | . . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑛 · π)) = 0) | 
| 33 | 30, 32 | eqtrd 2776 | . . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = 0) | 
| 34 | 33 | oveq1d 7447 | . . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁))) | 
| 35 | 19, 26 | nndivred 12321 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ ℝ) | 
| 36 | 35 | resincld 16180 | . . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℝ) | 
| 37 | 36 | recnd 11290 | . . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℂ) | 
| 38 | 26 | nnnn0d 12589 | . . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈
ℕ0) | 
| 39 | 37, 38 | expcld 14187 | . . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ∈ ℂ) | 
| 40 |  | sincosq1sgn 26541 | . . . . . . . . . . 11
⊢ (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) →
(0 < (sin‘((𝑛
· π) / 𝑁)) ∧
0 < (cos‘((𝑛
· π) / 𝑁)))) | 
| 41 | 2, 40 | syl 17 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 <
(cos‘((𝑛 ·
π) / 𝑁)))) | 
| 42 | 41 | simpld 494 | . . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 0 < (sin‘((𝑛 · π) / 𝑁))) | 
| 43 | 42 | gt0ne0d 11828 | . . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ≠ 0) | 
| 44 | 26 | nnzd 12642 | . . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℤ) | 
| 45 | 37, 43, 44 | expne0d 14193 | . . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ≠ 0) | 
| 46 | 39, 45 | div0d 12043 | . . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = 0) | 
| 47 | 13, 34, 46 | 3eqtrd 2780 | . . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0) | 
| 48 | 1, 11 | basellem2 27126 | . . . . . . . . 9
⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ)
∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛)))))) | 
| 49 | 48 | simp1d 1142 | . . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑃 ∈
(Poly‘ℂ)) | 
| 50 |  | plyf 26238 | . . . . . . . 8
⊢ (𝑃 ∈ (Poly‘ℂ)
→ 𝑃:ℂ⟶ℂ) | 
| 51 |  | ffn 6735 | . . . . . . . 8
⊢ (𝑃:ℂ⟶ℂ →
𝑃 Fn
ℂ) | 
| 52 | 49, 50, 51 | 3syl 18 | . . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑃 Fn ℂ) | 
| 53 | 52 | adantr 480 | . . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑃 Fn ℂ) | 
| 54 |  | fniniseg 7079 | . . . . . 6
⊢ (𝑃 Fn ℂ →
(((tan‘((𝑛 ·
π) / 𝑁))↑-2) ∈
(◡𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧
(𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0))) | 
| 55 | 53, 54 | syl 17 | . . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (◡𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧
(𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0))) | 
| 56 | 10, 47, 55 | mpbir2and 713 | . . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (◡𝑃 “ {0})) | 
| 57 |  | basel.t | . . . 4
⊢ 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) | 
| 58 | 56, 57 | fmptd 7133 | . . 3
⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶(◡𝑃 “ {0})) | 
| 59 |  | fveq2 6905 | . . . . . 6
⊢ (𝑘 = 𝑚 → (𝑇‘𝑘) = (𝑇‘𝑚)) | 
| 60 |  | fveq2 6905 | . . . . . 6
⊢ (𝑘 = 𝑥 → (𝑇‘𝑘) = (𝑇‘𝑥)) | 
| 61 |  | fveq2 6905 | . . . . . 6
⊢ (𝑘 = 𝑦 → (𝑇‘𝑘) = (𝑇‘𝑦)) | 
| 62 | 14 | zred 12724 | . . . . . . 7
⊢ (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℝ) | 
| 63 | 62 | ssriv 3986 | . . . . . 6
⊢
(1...𝑀) ⊆
ℝ | 
| 64 | 9 | rpred 13078 | . . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ) | 
| 65 | 64, 57 | fmptd 7133 | . . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶ℝ) | 
| 66 | 65 | ffvelcdmda 7103 | . . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇‘𝑘) ∈ ℝ) | 
| 67 |  | simplr 768 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 < 𝑚) | 
| 68 | 63 | sseli 3978 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℝ) | 
| 69 | 68 | ad2antrl 728 | . . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 ∈ ℝ) | 
| 70 | 63 | sseli 3978 | . . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℝ) | 
| 71 | 70 | ad2antll 729 | . . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑚 ∈ ℝ) | 
| 72 | 17 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → π ∈
ℝ) | 
| 73 |  | pipos 26503 | . . . . . . . . . . . . . . . 16
⊢ 0 <
π | 
| 74 | 73 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < π) | 
| 75 |  | ltmul1 12118 | . . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ (π
∈ ℝ ∧ 0 < π)) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π))) | 
| 76 | 69, 71, 72, 74, 75 | syl112anc 1375 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π))) | 
| 77 | 67, 76 | mpbid 232 | . . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) < (𝑚 · π)) | 
| 78 |  | remulcl 11241 | . . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℝ ∧ π
∈ ℝ) → (𝑘
· π) ∈ ℝ) | 
| 79 | 69, 17, 78 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) ∈
ℝ) | 
| 80 |  | remulcl 11241 | . . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℝ ∧ π
∈ ℝ) → (𝑚
· π) ∈ ℝ) | 
| 81 | 71, 17, 80 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑚 · π) ∈
ℝ) | 
| 82 | 25 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℕ) | 
| 83 | 82 | nnred 12282 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℝ) | 
| 84 | 82 | nngt0d 12316 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < 𝑁) | 
| 85 |  | ltdiv1 12133 | . . . . . . . . . . . . . 14
⊢ (((𝑘 · π) ∈ ℝ
∧ (𝑚 · π)
∈ ℝ ∧ (𝑁
∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁))) | 
| 86 | 79, 81, 83, 84, 85 | syl112anc 1375 | . . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁))) | 
| 87 | 77, 86 | mpbid 232 | . . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)) | 
| 88 |  | neghalfpirx 26509 | . . . . . . . . . . . . . . 15
⊢ -(π /
2) ∈ ℝ* | 
| 89 |  | pirp 26504 | . . . . . . . . . . . . . . . . 17
⊢ π
∈ ℝ+ | 
| 90 |  | rphalfcl 13063 | . . . . . . . . . . . . . . . . 17
⊢ (π
∈ ℝ+ → (π / 2) ∈
ℝ+) | 
| 91 |  | rpge0 13049 | . . . . . . . . . . . . . . . . 17
⊢ ((π /
2) ∈ ℝ+ → 0 ≤ (π / 2)) | 
| 92 | 89, 90, 91 | mp2b 10 | . . . . . . . . . . . . . . . 16
⊢ 0 ≤
(π / 2) | 
| 93 |  | halfpire 26507 | . . . . . . . . . . . . . . . . 17
⊢ (π /
2) ∈ ℝ | 
| 94 |  | le0neg2 11773 | . . . . . . . . . . . . . . . . 17
⊢ ((π /
2) ∈ ℝ → (0 ≤ (π / 2) ↔ -(π / 2) ≤
0)) | 
| 95 | 93, 94 | ax-mp 5 | . . . . . . . . . . . . . . . 16
⊢ (0 ≤
(π / 2) ↔ -(π / 2) ≤ 0) | 
| 96 | 92, 95 | mpbi 230 | . . . . . . . . . . . . . . 15
⊢ -(π /
2) ≤ 0 | 
| 97 |  | iooss1 13423 | . . . . . . . . . . . . . . 15
⊢ ((-(π
/ 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π /
2)) ⊆ (-(π / 2)(,)(π / 2))) | 
| 98 | 88, 96, 97 | mp2an 692 | . . . . . . . . . . . . . 14
⊢
(0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)) | 
| 99 | 1 | basellem1 27125 | . . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2))) | 
| 100 | 99 | ad2ant2r 747 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2))) | 
| 101 | 98, 100 | sselid 3980 | . . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π /
2))) | 
| 102 | 1 | basellem1 27125 | . . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℕ ∧ 𝑚 ∈ (1...𝑀)) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2))) | 
| 103 | 102 | ad2ant2rl 749 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2))) | 
| 104 | 98, 103 | sselid 3980 | . . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π /
2))) | 
| 105 |  | tanord 26581 | . . . . . . . . . . . . 13
⊢ ((((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π /
2)) ∧ ((𝑚 ·
π) / 𝑁) ∈ (-(π /
2)(,)(π / 2))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)))) | 
| 106 | 101, 104,
105 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)))) | 
| 107 | 87, 106 | mpbid 232 | . . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))) | 
| 108 |  | tanrpcl 26547 | . . . . . . . . . . . . 13
⊢ (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) →
(tan‘((𝑘 ·
π) / 𝑁)) ∈
ℝ+) | 
| 109 | 100, 108 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈
ℝ+) | 
| 110 |  | tanrpcl 26547 | . . . . . . . . . . . . 13
⊢ (((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)) →
(tan‘((𝑚 ·
π) / 𝑁)) ∈
ℝ+) | 
| 111 | 103, 110 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈
ℝ+) | 
| 112 |  | rprege0 13051 | . . . . . . . . . . . . 13
⊢
((tan‘((𝑘
· π) / 𝑁)) ∈
ℝ+ → ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤
(tan‘((𝑘 ·
π) / 𝑁)))) | 
| 113 |  | rprege0 13051 | . . . . . . . . . . . . 13
⊢
((tan‘((𝑚
· π) / 𝑁)) ∈
ℝ+ → ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤
(tan‘((𝑚 ·
π) / 𝑁)))) | 
| 114 |  | lt2sq 14174 | . . . . . . . . . . . . 13
⊢
((((tan‘((𝑘
· π) / 𝑁)) ∈
ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))) ∧ ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤
(tan‘((𝑚 ·
π) / 𝑁)))) →
((tan‘((𝑘 ·
π) / 𝑁)) <
(tan‘((𝑚 ·
π) / 𝑁)) ↔
((tan‘((𝑘 ·
π) / 𝑁))↑2) <
((tan‘((𝑚 ·
π) / 𝑁))↑2))) | 
| 115 | 112, 113,
114 | syl2an 596 | . . . . . . . . . . . 12
⊢
(((tan‘((𝑘
· π) / 𝑁)) ∈
ℝ+ ∧ (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+) →
((tan‘((𝑘 ·
π) / 𝑁)) <
(tan‘((𝑚 ·
π) / 𝑁)) ↔
((tan‘((𝑘 ·
π) / 𝑁))↑2) <
((tan‘((𝑚 ·
π) / 𝑁))↑2))) | 
| 116 | 109, 111,
115 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2))) | 
| 117 | 107, 116 | mpbid 232 | . . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)) | 
| 118 |  | rpexpcl 14122 | . . . . . . . . . . . 12
⊢
(((tan‘((𝑘
· π) / 𝑁)) ∈
ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈
ℝ+) | 
| 119 | 109, 5, 118 | sylancl 586 | . . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈
ℝ+) | 
| 120 |  | rpexpcl 14122 | . . . . . . . . . . . 12
⊢
(((tan‘((𝑚
· π) / 𝑁)) ∈
ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈
ℝ+) | 
| 121 | 111, 5, 120 | sylancl 586 | . . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈
ℝ+) | 
| 122 | 119, 121 | ltrecd 13096 | . . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2) ↔ (1 /
((tan‘((𝑚 ·
π) / 𝑁))↑2)) <
(1 / ((tan‘((𝑘
· π) / 𝑁))↑2)))) | 
| 123 | 117, 122 | mpbid 232 | . . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 /
((tan‘((𝑘 ·
π) / 𝑁))↑2))) | 
| 124 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → (𝑛 · π) = (𝑚 · π)) | 
| 125 | 124 | fvoveq1d 7454 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑚 · π) / 𝑁))) | 
| 126 | 125 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑚 · π) / 𝑁))↑-2)) | 
| 127 |  | ovex 7465 | . . . . . . . . . . . 12
⊢
((tan‘((𝑚
· π) / 𝑁))↑-2) ∈ V | 
| 128 | 126, 57, 127 | fvmpt 7015 | . . . . . . . . . . 11
⊢ (𝑚 ∈ (1...𝑀) → (𝑇‘𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2)) | 
| 129 | 128 | ad2antll 729 | . . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2)) | 
| 130 | 111 | rpcnd 13080 | . . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℂ) | 
| 131 |  | 2nn0 12545 | . . . . . . . . . . 11
⊢ 2 ∈
ℕ0 | 
| 132 |  | expneg 14111 | . . . . . . . . . . 11
⊢
(((tan‘((𝑚
· π) / 𝑁)) ∈
ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 /
((tan‘((𝑚 ·
π) / 𝑁))↑2))) | 
| 133 | 130, 131,
132 | sylancl 586 | . . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2))) | 
| 134 | 129, 133 | eqtrd 2776 | . . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑚) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2))) | 
| 135 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π)) | 
| 136 | 135 | fvoveq1d 7454 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁))) | 
| 137 | 136 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2)) | 
| 138 |  | ovex 7465 | . . . . . . . . . . . 12
⊢
((tan‘((𝑘
· π) / 𝑁))↑-2) ∈ V | 
| 139 | 137, 57, 138 | fvmpt 7015 | . . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑀) → (𝑇‘𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2)) | 
| 140 | 139 | ad2antrl 728 | . . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2)) | 
| 141 | 109 | rpcnd 13080 | . . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ) | 
| 142 |  | expneg 14111 | . . . . . . . . . . 11
⊢
(((tan‘((𝑘
· π) / 𝑁)) ∈
ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 /
((tan‘((𝑘 ·
π) / 𝑁))↑2))) | 
| 143 | 141, 131,
142 | sylancl 586 | . . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))) | 
| 144 | 140, 143 | eqtrd 2776 | . . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑘) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))) | 
| 145 | 123, 134,
144 | 3brtr4d 5174 | . . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑚) < (𝑇‘𝑘)) | 
| 146 | 145 | an32s 652 | . . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) ∧ 𝑘 < 𝑚) → (𝑇‘𝑚) < (𝑇‘𝑘)) | 
| 147 | 146 | ex 412 | . . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 → (𝑇‘𝑚) < (𝑇‘𝑘))) | 
| 148 | 59, 60, 61, 63, 66, 147 | eqord2 11795 | . . . . 5
⊢ ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → (𝑥 = 𝑦 ↔ (𝑇‘𝑥) = (𝑇‘𝑦))) | 
| 149 | 148 | biimprd 248 | . . . 4
⊢ ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → ((𝑇‘𝑥) = (𝑇‘𝑦) → 𝑥 = 𝑦)) | 
| 150 | 149 | ralrimivva 3201 | . . 3
⊢ (𝑀 ∈ ℕ →
∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇‘𝑥) = (𝑇‘𝑦) → 𝑥 = 𝑦)) | 
| 151 |  | dff13 7276 | . . 3
⊢ (𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0}) ↔ (𝑇:(1...𝑀)⟶(◡𝑃 “ {0}) ∧ ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇‘𝑥) = (𝑇‘𝑦) → 𝑥 = 𝑦))) | 
| 152 | 58, 150, 151 | sylanbrc 583 | . 2
⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0})) | 
| 153 | 48 | simp2d 1143 | . . . . . . . . 9
⊢ (𝑀 ∈ ℕ →
(deg‘𝑃) = 𝑀) | 
| 154 |  | nnne0 12301 | . . . . . . . . 9
⊢ (𝑀 ∈ ℕ → 𝑀 ≠ 0) | 
| 155 | 153, 154 | eqnetrd 3007 | . . . . . . . 8
⊢ (𝑀 ∈ ℕ →
(deg‘𝑃) ≠
0) | 
| 156 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑃 = 0𝑝 →
(deg‘𝑃) =
(deg‘0𝑝)) | 
| 157 |  | dgr0 26303 | . . . . . . . . . 10
⊢
(deg‘0𝑝) = 0 | 
| 158 | 156, 157 | eqtrdi 2792 | . . . . . . . . 9
⊢ (𝑃 = 0𝑝 →
(deg‘𝑃) =
0) | 
| 159 | 158 | necon3i 2972 | . . . . . . . 8
⊢
((deg‘𝑃) ≠
0 → 𝑃 ≠
0𝑝) | 
| 160 | 155, 159 | syl 17 | . . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑃 ≠
0𝑝) | 
| 161 |  | eqid 2736 | . . . . . . . 8
⊢ (◡𝑃 “ {0}) = (◡𝑃 “ {0}) | 
| 162 | 161 | fta1 26351 | . . . . . . 7
⊢ ((𝑃 ∈ (Poly‘ℂ)
∧ 𝑃 ≠
0𝑝) → ((◡𝑃 “ {0}) ∈ Fin ∧
(♯‘(◡𝑃 “ {0})) ≤ (deg‘𝑃))) | 
| 163 | 49, 160, 162 | syl2anc 584 | . . . . . 6
⊢ (𝑀 ∈ ℕ → ((◡𝑃 “ {0}) ∈ Fin ∧
(♯‘(◡𝑃 “ {0})) ≤ (deg‘𝑃))) | 
| 164 | 163 | simpld 494 | . . . . 5
⊢ (𝑀 ∈ ℕ → (◡𝑃 “ {0}) ∈ Fin) | 
| 165 |  | f1domg 9013 | . . . . 5
⊢ ((◡𝑃 “ {0}) ∈ Fin → (𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0}) → (1...𝑀) ≼ (◡𝑃 “ {0}))) | 
| 166 | 164, 152,
165 | sylc 65 | . . . 4
⊢ (𝑀 ∈ ℕ →
(1...𝑀) ≼ (◡𝑃 “ {0})) | 
| 167 | 163 | simprd 495 | . . . . . 6
⊢ (𝑀 ∈ ℕ →
(♯‘(◡𝑃 “ {0})) ≤ (deg‘𝑃)) | 
| 168 |  | nnnn0 12535 | . . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) | 
| 169 |  | hashfz1 14386 | . . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ (♯‘(1...𝑀)) = 𝑀) | 
| 170 | 168, 169 | syl 17 | . . . . . . 7
⊢ (𝑀 ∈ ℕ →
(♯‘(1...𝑀)) =
𝑀) | 
| 171 | 153, 170 | eqtr4d 2779 | . . . . . 6
⊢ (𝑀 ∈ ℕ →
(deg‘𝑃) =
(♯‘(1...𝑀))) | 
| 172 | 167, 171 | breqtrd 5168 | . . . . 5
⊢ (𝑀 ∈ ℕ →
(♯‘(◡𝑃 “ {0})) ≤
(♯‘(1...𝑀))) | 
| 173 |  | fzfid 14015 | . . . . . 6
⊢ (𝑀 ∈ ℕ →
(1...𝑀) ∈
Fin) | 
| 174 |  | hashdom 14419 | . . . . . 6
⊢ (((◡𝑃 “ {0}) ∈ Fin ∧ (1...𝑀) ∈ Fin) →
((♯‘(◡𝑃 “ {0})) ≤
(♯‘(1...𝑀))
↔ (◡𝑃 “ {0}) ≼ (1...𝑀))) | 
| 175 | 164, 173,
174 | syl2anc 584 | . . . . 5
⊢ (𝑀 ∈ ℕ →
((♯‘(◡𝑃 “ {0})) ≤
(♯‘(1...𝑀))
↔ (◡𝑃 “ {0}) ≼ (1...𝑀))) | 
| 176 | 172, 175 | mpbid 232 | . . . 4
⊢ (𝑀 ∈ ℕ → (◡𝑃 “ {0}) ≼ (1...𝑀)) | 
| 177 |  | sbth 9134 | . . . 4
⊢
(((1...𝑀) ≼
(◡𝑃 “ {0}) ∧ (◡𝑃 “ {0}) ≼ (1...𝑀)) → (1...𝑀) ≈ (◡𝑃 “ {0})) | 
| 178 | 166, 176,
177 | syl2anc 584 | . . 3
⊢ (𝑀 ∈ ℕ →
(1...𝑀) ≈ (◡𝑃 “ {0})) | 
| 179 |  | f1finf1o 9306 | . . 3
⊢
(((1...𝑀) ≈
(◡𝑃 “ {0}) ∧ (◡𝑃 “ {0}) ∈ Fin) → (𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(◡𝑃 “ {0}))) | 
| 180 | 178, 164,
179 | syl2anc 584 | . 2
⊢ (𝑀 ∈ ℕ → (𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(◡𝑃 “ {0}))) | 
| 181 | 152, 180 | mpbid 232 | 1
⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(◡𝑃 “ {0})) |