MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem4 Structured version   Visualization version   GIF version

Theorem basellem4 25669
Description: Lemma for basel 25675. By basellem3 25668, the expression 𝑃((cot𝑥)↑2) = sin(𝑁𝑥) / (sin𝑥)↑𝑁 goes to zero whenever 𝑥 = 𝑛π / 𝑁 for some 𝑛 ∈ (1...𝑀), so this function enumerates 𝑀 distinct roots of a degree- 𝑀 polynomial, which must therefore be all the roots by fta1 24904. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
Assertion
Ref Expression
basellem4 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)   𝑇(𝑡,𝑗,𝑛)

Proof of Theorem basellem4
Dummy variables 𝑘 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basel.n . . . . . . . . 9 𝑁 = ((2 · 𝑀) + 1)
21basellem1 25666 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)))
3 tanrpcl 25097 . . . . . . . 8 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
42, 3syl 17 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
5 2z 12002 . . . . . . . 8 2 ∈ ℤ
6 znegcl 12005 . . . . . . . 8 (2 ∈ ℤ → -2 ∈ ℤ)
75, 6ax-mp 5 . . . . . . 7 -2 ∈ ℤ
8 rpexpcl 13444 . . . . . . 7 (((tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+ ∧ -2 ∈ ℤ) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
94, 7, 8sylancl 589 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
109rpcnd 12421 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ)
11 basel.p . . . . . . . 8 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
121, 11basellem3 25668 . . . . . . 7 ((𝑀 ∈ ℕ ∧ ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2))) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
132, 12syldan 594 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
14 elfzelz 12902 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℤ)
1514adantl 485 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℤ)
1615zred 12075 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℝ)
17 pire 25051 . . . . . . . . . . . 12 π ∈ ℝ
18 remulcl 10611 . . . . . . . . . . . 12 ((𝑛 ∈ ℝ ∧ π ∈ ℝ) → (𝑛 · π) ∈ ℝ)
1916, 17, 18sylancl 589 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℝ)
2019recnd 10658 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℂ)
21 2nn 11698 . . . . . . . . . . . . . . 15 2 ∈ ℕ
22 nnmulcl 11649 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
2321, 22mpan 689 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
2423peano2nnd 11642 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
251, 24eqeltrid 2894 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2625adantr 484 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2726nncnd 11641 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℂ)
2826nnne0d 11675 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ≠ 0)
2920, 27, 28divcan2d 11407 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑁 · ((𝑛 · π) / 𝑁)) = (𝑛 · π))
3029fveq2d 6649 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = (sin‘(𝑛 · π)))
31 sinkpi 25114 . . . . . . . . 9 (𝑛 ∈ ℤ → (sin‘(𝑛 · π)) = 0)
3215, 31syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑛 · π)) = 0)
3330, 32eqtrd 2833 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = 0)
3433oveq1d 7150 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
3519, 26nndivred 11679 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ ℝ)
3635resincld 15488 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℝ)
3736recnd 10658 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℂ)
3826nnnn0d 11943 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ0)
3937, 38expcld 13506 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ∈ ℂ)
40 sincosq1sgn 25091 . . . . . . . . . . 11 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
412, 40syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
4241simpld 498 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 0 < (sin‘((𝑛 · π) / 𝑁)))
4342gt0ne0d 11193 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ≠ 0)
4426nnzd 12074 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℤ)
4537, 43, 44expne0d 13512 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ≠ 0)
4639, 45div0d 11404 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = 0)
4713, 34, 463eqtrd 2837 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)
481, 11basellem2 25667 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
4948simp1d 1139 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
50 plyf 24795 . . . . . . . 8 (𝑃 ∈ (Poly‘ℂ) → 𝑃:ℂ⟶ℂ)
51 ffn 6487 . . . . . . . 8 (𝑃:ℂ⟶ℂ → 𝑃 Fn ℂ)
5249, 50, 513syl 18 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 Fn ℂ)
5352adantr 484 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑃 Fn ℂ)
54 fniniseg 6807 . . . . . 6 (𝑃 Fn ℂ → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5553, 54syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5610, 47, 55mpbir2and 712 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}))
57 basel.t . . . 4 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
5856, 57fmptd 6855 . . 3 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶(𝑃 “ {0}))
59 fveq2 6645 . . . . . 6 (𝑘 = 𝑚 → (𝑇𝑘) = (𝑇𝑚))
60 fveq2 6645 . . . . . 6 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
61 fveq2 6645 . . . . . 6 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
6214zred 12075 . . . . . . 7 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℝ)
6362ssriv 3919 . . . . . 6 (1...𝑀) ⊆ ℝ
649rpred 12419 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ)
6564, 57fmptd 6855 . . . . . . 7 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶ℝ)
6665ffvelrnda 6828 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇𝑘) ∈ ℝ)
67 simplr 768 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 < 𝑚)
6863sseli 3911 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℝ)
6968ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 ∈ ℝ)
7063sseli 3911 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℝ)
7170ad2antll 728 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑚 ∈ ℝ)
7217a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → π ∈ ℝ)
73 pipos 25053 . . . . . . . . . . . . . . . 16 0 < π
7473a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < π)
75 ltmul1 11479 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7669, 71, 72, 74, 75syl112anc 1371 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7767, 76mpbid 235 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) < (𝑚 · π))
78 remulcl 10611 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ π ∈ ℝ) → (𝑘 · π) ∈ ℝ)
7969, 17, 78sylancl 589 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) ∈ ℝ)
80 remulcl 10611 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ π ∈ ℝ) → (𝑚 · π) ∈ ℝ)
8171, 17, 80sylancl 589 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑚 · π) ∈ ℝ)
8225ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℕ)
8382nnred 11640 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℝ)
8482nngt0d 11674 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < 𝑁)
85 ltdiv1 11493 . . . . . . . . . . . . . 14 (((𝑘 · π) ∈ ℝ ∧ (𝑚 · π) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8679, 81, 83, 84, 85syl112anc 1371 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8777, 86mpbid 235 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁))
88 neghalfpirx 25059 . . . . . . . . . . . . . . 15 -(π / 2) ∈ ℝ*
89 pirp 25054 . . . . . . . . . . . . . . . . 17 π ∈ ℝ+
90 rphalfcl 12404 . . . . . . . . . . . . . . . . 17 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
91 rpge0 12390 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
9289, 90, 91mp2b 10 . . . . . . . . . . . . . . . 16 0 ≤ (π / 2)
93 halfpire 25057 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
94 le0neg2 11138 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ → (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . 16 (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0)
9692, 95mpbi 233 . . . . . . . . . . . . . . 15 -(π / 2) ≤ 0
97 iooss1 12761 . . . . . . . . . . . . . . 15 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
9888, 96, 97mp2an 691 . . . . . . . . . . . . . 14 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
991basellem1 25666 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10099ad2ant2r 746 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10198, 100sseldi 3913 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
1021basellem1 25666 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑚 ∈ (1...𝑀)) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
103102ad2ant2rl 748 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
10498, 103sseldi 3913 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
105 tanord 25130 . . . . . . . . . . . . 13 ((((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)) ∧ ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
106101, 104, 105syl2anc 587 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
10787, 106mpbid 235 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)))
108 tanrpcl 25097 . . . . . . . . . . . . 13 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
109100, 108syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
110 tanrpcl 25097 . . . . . . . . . . . . 13 (((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
111103, 110syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
112 rprege0 12392 . . . . . . . . . . . . 13 ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))))
113 rprege0 12392 . . . . . . . . . . . . 13 ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁))))
114 lt2sq 13494 . . . . . . . . . . . . 13 ((((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))) ∧ ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁)))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
115112, 113, 114syl2an 598 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
116109, 111, 115syl2anc 587 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
117107, 116mpbid 235 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2))
118 rpexpcl 13444 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
119109, 5, 118sylancl 589 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
120 rpexpcl 13444 . . . . . . . . . . . 12 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
121111, 5, 120sylancl 589 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
122119, 121ltrecd 12437 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2) ↔ (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
123117, 122mpbid 235 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
124 oveq1 7142 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑛 · π) = (𝑚 · π))
125124fvoveq1d 7157 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑚 · π) / 𝑁)))
126125oveq1d 7150 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
127 ovex 7168 . . . . . . . . . . . 12 ((tan‘((𝑚 · π) / 𝑁))↑-2) ∈ V
128126, 57, 127fvmpt 6745 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑀) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
129128ad2antll 728 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
130111rpcnd 12421 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℂ)
131 2nn0 11902 . . . . . . . . . . 11 2 ∈ ℕ0
132 expneg 13433 . . . . . . . . . . 11 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
133130, 131, 132sylancl 589 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
134129, 133eqtrd 2833 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
135 oveq1 7142 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
136135fvoveq1d 7157 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁)))
137136oveq1d 7150 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
138 ovex 7168 . . . . . . . . . . . 12 ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ V
139137, 57, 138fvmpt 6745 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑀) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
140139ad2antrl 727 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
141109rpcnd 12421 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ)
142 expneg 13433 . . . . . . . . . . 11 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
143141, 131, 142sylancl 589 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
144140, 143eqtrd 2833 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
145123, 134, 1443brtr4d 5062 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) < (𝑇𝑘))
146145an32s 651 . . . . . . 7 (((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) ∧ 𝑘 < 𝑚) → (𝑇𝑚) < (𝑇𝑘))
147146ex 416 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 → (𝑇𝑚) < (𝑇𝑘)))
14859, 60, 61, 63, 66, 147eqord2 11160 . . . . 5 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → (𝑥 = 𝑦 ↔ (𝑇𝑥) = (𝑇𝑦)))
149148biimprd 251 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
150149ralrimivva 3156 . . 3 (𝑀 ∈ ℕ → ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
151 dff13 6991 . . 3 (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ (𝑇:(1...𝑀)⟶(𝑃 “ {0}) ∧ ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
15258, 150, 151sylanbrc 586 . 2 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1→(𝑃 “ {0}))
15348simp2d 1140 . . . . . . . . 9 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
154 nnne0 11659 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
155153, 154eqnetrd 3054 . . . . . . . 8 (𝑀 ∈ ℕ → (deg‘𝑃) ≠ 0)
156 fveq2 6645 . . . . . . . . . 10 (𝑃 = 0𝑝 → (deg‘𝑃) = (deg‘0𝑝))
157 dgr0 24859 . . . . . . . . . 10 (deg‘0𝑝) = 0
158156, 157eqtrdi 2849 . . . . . . . . 9 (𝑃 = 0𝑝 → (deg‘𝑃) = 0)
159158necon3i 3019 . . . . . . . 8 ((deg‘𝑃) ≠ 0 → 𝑃 ≠ 0𝑝)
160155, 159syl 17 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 ≠ 0𝑝)
161 eqid 2798 . . . . . . . 8 (𝑃 “ {0}) = (𝑃 “ {0})
162161fta1 24904 . . . . . . 7 ((𝑃 ∈ (Poly‘ℂ) ∧ 𝑃 ≠ 0𝑝) → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
16349, 160, 162syl2anc 587 . . . . . 6 (𝑀 ∈ ℕ → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
164163simpld 498 . . . . 5 (𝑀 ∈ ℕ → (𝑃 “ {0}) ∈ Fin)
165 f1domg 8512 . . . . 5 ((𝑃 “ {0}) ∈ Fin → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) → (1...𝑀) ≼ (𝑃 “ {0})))
166164, 152, 165sylc 65 . . . 4 (𝑀 ∈ ℕ → (1...𝑀) ≼ (𝑃 “ {0}))
167163simprd 499 . . . . . 6 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃))
168 nnnn0 11892 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
169 hashfz1 13702 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
170168, 169syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
171153, 170eqtr4d 2836 . . . . . 6 (𝑀 ∈ ℕ → (deg‘𝑃) = (♯‘(1...𝑀)))
172167, 171breqtrd 5056 . . . . 5 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)))
173 fzfid 13336 . . . . . 6 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
174 hashdom 13736 . . . . . 6 (((𝑃 “ {0}) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
175164, 173, 174syl2anc 587 . . . . 5 (𝑀 ∈ ℕ → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
176172, 175mpbid 235 . . . 4 (𝑀 ∈ ℕ → (𝑃 “ {0}) ≼ (1...𝑀))
177 sbth 8621 . . . 4 (((1...𝑀) ≼ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ≼ (1...𝑀)) → (1...𝑀) ≈ (𝑃 “ {0}))
178166, 176, 177syl2anc 587 . . 3 (𝑀 ∈ ℕ → (1...𝑀) ≈ (𝑃 “ {0}))
179 f1finf1o 8729 . . 3 (((1...𝑀) ≈ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ∈ Fin) → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
180178, 164, 179syl2anc 587 . 2 (𝑀 ∈ ℕ → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
181152, 180mpbid 235 1 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522   Fn wfn 6319  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cen 8489  cdom 8490  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  +crp 12377  (,)cioo 12726  ...cfz 12885  cexp 13425  Ccbc 13658  chash 13686  Σcsu 15034  sincsin 15409  cosccos 15410  tanctan 15411  πcpi 15412  0𝑝c0p 24273  Polycply 24781  coeffccoe 24783  degcdgr 24784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-0p 24274  df-limc 24469  df-dv 24470  df-ply 24785  df-idp 24786  df-coe 24787  df-dgr 24788  df-quot 24887
This theorem is referenced by:  basellem5  25670
  Copyright terms: Public domain W3C validator