| Step | Hyp | Ref
| Expression |
| 1 | | basel.n |
. . . . . . . . 9
⊢ 𝑁 = ((2 · 𝑀) + 1) |
| 2 | 1 | basellem1 27048 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2))) |
| 3 | | tanrpcl 26470 |
. . . . . . . 8
⊢ (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) →
(tan‘((𝑛 ·
π) / 𝑁)) ∈
ℝ+) |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (tan‘((𝑛 · π) / 𝑁)) ∈
ℝ+) |
| 5 | | 2z 12629 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 6 | | znegcl 12632 |
. . . . . . . 8
⊢ (2 ∈
ℤ → -2 ∈ ℤ) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . 7
⊢ -2 ∈
ℤ |
| 8 | | rpexpcl 14103 |
. . . . . . 7
⊢
(((tan‘((𝑛
· π) / 𝑁)) ∈
ℝ+ ∧ -2 ∈ ℤ) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈
ℝ+) |
| 9 | 4, 7, 8 | sylancl 586 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈
ℝ+) |
| 10 | 9 | rpcnd 13058 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ) |
| 11 | | basel.p |
. . . . . . . 8
⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) |
| 12 | 1, 11 | basellem3 27050 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)))
→ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁))) |
| 13 | 2, 12 | syldan 591 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁))) |
| 14 | | elfzelz 13546 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℤ) |
| 15 | 14 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℤ) |
| 16 | 15 | zred 12702 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℝ) |
| 17 | | pire 26423 |
. . . . . . . . . . . 12
⊢ π
∈ ℝ |
| 18 | | remulcl 11219 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℝ ∧ π
∈ ℝ) → (𝑛
· π) ∈ ℝ) |
| 19 | 16, 17, 18 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈
ℝ) |
| 20 | 19 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈
ℂ) |
| 21 | | 2nn 12318 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
| 22 | | nnmulcl 12269 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑀
∈ ℕ) → (2 · 𝑀) ∈ ℕ) |
| 23 | 21, 22 | mpan 690 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ∈
ℕ) |
| 24 | 23 | peano2nnd 12262 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ → ((2
· 𝑀) + 1) ∈
ℕ) |
| 25 | 1, 24 | eqeltrid 2839 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ → 𝑁 ∈
ℕ) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ) |
| 27 | 26 | nncnd 12261 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℂ) |
| 28 | 26 | nnne0d 12295 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ≠ 0) |
| 29 | 20, 27, 28 | divcan2d 12024 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑁 · ((𝑛 · π) / 𝑁)) = (𝑛 · π)) |
| 30 | 29 | fveq2d 6885 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = (sin‘(𝑛 · π))) |
| 31 | | sinkpi 26488 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ →
(sin‘(𝑛 ·
π)) = 0) |
| 32 | 15, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑛 · π)) = 0) |
| 33 | 30, 32 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = 0) |
| 34 | 33 | oveq1d 7425 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁))) |
| 35 | 19, 26 | nndivred 12299 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ ℝ) |
| 36 | 35 | resincld 16166 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℝ) |
| 37 | 36 | recnd 11268 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℂ) |
| 38 | 26 | nnnn0d 12567 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈
ℕ0) |
| 39 | 37, 38 | expcld 14169 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ∈ ℂ) |
| 40 | | sincosq1sgn 26464 |
. . . . . . . . . . 11
⊢ (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) →
(0 < (sin‘((𝑛
· π) / 𝑁)) ∧
0 < (cos‘((𝑛
· π) / 𝑁)))) |
| 41 | 2, 40 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 <
(cos‘((𝑛 ·
π) / 𝑁)))) |
| 42 | 41 | simpld 494 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 0 < (sin‘((𝑛 · π) / 𝑁))) |
| 43 | 42 | gt0ne0d 11806 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ≠ 0) |
| 44 | 26 | nnzd 12620 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℤ) |
| 45 | 37, 43, 44 | expne0d 14175 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ≠ 0) |
| 46 | 39, 45 | div0d 12021 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = 0) |
| 47 | 13, 34, 46 | 3eqtrd 2775 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0) |
| 48 | 1, 11 | basellem2 27049 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ)
∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛)))))) |
| 49 | 48 | simp1d 1142 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑃 ∈
(Poly‘ℂ)) |
| 50 | | plyf 26160 |
. . . . . . . 8
⊢ (𝑃 ∈ (Poly‘ℂ)
→ 𝑃:ℂ⟶ℂ) |
| 51 | | ffn 6711 |
. . . . . . . 8
⊢ (𝑃:ℂ⟶ℂ →
𝑃 Fn
ℂ) |
| 52 | 49, 50, 51 | 3syl 18 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑃 Fn ℂ) |
| 53 | 52 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑃 Fn ℂ) |
| 54 | | fniniseg 7055 |
. . . . . 6
⊢ (𝑃 Fn ℂ →
(((tan‘((𝑛 ·
π) / 𝑁))↑-2) ∈
(◡𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧
(𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0))) |
| 55 | 53, 54 | syl 17 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (◡𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧
(𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0))) |
| 56 | 10, 47, 55 | mpbir2and 713 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (◡𝑃 “ {0})) |
| 57 | | basel.t |
. . . 4
⊢ 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) |
| 58 | 56, 57 | fmptd 7109 |
. . 3
⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶(◡𝑃 “ {0})) |
| 59 | | fveq2 6881 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (𝑇‘𝑘) = (𝑇‘𝑚)) |
| 60 | | fveq2 6881 |
. . . . . 6
⊢ (𝑘 = 𝑥 → (𝑇‘𝑘) = (𝑇‘𝑥)) |
| 61 | | fveq2 6881 |
. . . . . 6
⊢ (𝑘 = 𝑦 → (𝑇‘𝑘) = (𝑇‘𝑦)) |
| 62 | 14 | zred 12702 |
. . . . . . 7
⊢ (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℝ) |
| 63 | 62 | ssriv 3967 |
. . . . . 6
⊢
(1...𝑀) ⊆
ℝ |
| 64 | 9 | rpred 13056 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ) |
| 65 | 64, 57 | fmptd 7109 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶ℝ) |
| 66 | 65 | ffvelcdmda 7079 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇‘𝑘) ∈ ℝ) |
| 67 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 < 𝑚) |
| 68 | 63 | sseli 3959 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℝ) |
| 69 | 68 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 ∈ ℝ) |
| 70 | 63 | sseli 3959 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℝ) |
| 71 | 70 | ad2antll 729 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑚 ∈ ℝ) |
| 72 | 17 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → π ∈
ℝ) |
| 73 | | pipos 26425 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
π |
| 74 | 73 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < π) |
| 75 | | ltmul1 12096 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ (π
∈ ℝ ∧ 0 < π)) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π))) |
| 76 | 69, 71, 72, 74, 75 | syl112anc 1376 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π))) |
| 77 | 67, 76 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) < (𝑚 · π)) |
| 78 | | remulcl 11219 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℝ ∧ π
∈ ℝ) → (𝑘
· π) ∈ ℝ) |
| 79 | 69, 17, 78 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) ∈
ℝ) |
| 80 | | remulcl 11219 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℝ ∧ π
∈ ℝ) → (𝑚
· π) ∈ ℝ) |
| 81 | 71, 17, 80 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑚 · π) ∈
ℝ) |
| 82 | 25 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℕ) |
| 83 | 82 | nnred 12260 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℝ) |
| 84 | 82 | nngt0d 12294 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < 𝑁) |
| 85 | | ltdiv1 12111 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 · π) ∈ ℝ
∧ (𝑚 · π)
∈ ℝ ∧ (𝑁
∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁))) |
| 86 | 79, 81, 83, 84, 85 | syl112anc 1376 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁))) |
| 87 | 77, 86 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)) |
| 88 | | neghalfpirx 26432 |
. . . . . . . . . . . . . . 15
⊢ -(π /
2) ∈ ℝ* |
| 89 | | pirp 26427 |
. . . . . . . . . . . . . . . . 17
⊢ π
∈ ℝ+ |
| 90 | | rphalfcl 13041 |
. . . . . . . . . . . . . . . . 17
⊢ (π
∈ ℝ+ → (π / 2) ∈
ℝ+) |
| 91 | | rpge0 13027 |
. . . . . . . . . . . . . . . . 17
⊢ ((π /
2) ∈ ℝ+ → 0 ≤ (π / 2)) |
| 92 | 89, 90, 91 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ 0 ≤
(π / 2) |
| 93 | | halfpire 26430 |
. . . . . . . . . . . . . . . . 17
⊢ (π /
2) ∈ ℝ |
| 94 | | le0neg2 11751 |
. . . . . . . . . . . . . . . . 17
⊢ ((π /
2) ∈ ℝ → (0 ≤ (π / 2) ↔ -(π / 2) ≤
0)) |
| 95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (0 ≤
(π / 2) ↔ -(π / 2) ≤ 0) |
| 96 | 92, 95 | mpbi 230 |
. . . . . . . . . . . . . . 15
⊢ -(π /
2) ≤ 0 |
| 97 | | iooss1 13402 |
. . . . . . . . . . . . . . 15
⊢ ((-(π
/ 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π /
2)) ⊆ (-(π / 2)(,)(π / 2))) |
| 98 | 88, 96, 97 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢
(0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)) |
| 99 | 1 | basellem1 27048 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2))) |
| 100 | 99 | ad2ant2r 747 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2))) |
| 101 | 98, 100 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π /
2))) |
| 102 | 1 | basellem1 27048 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℕ ∧ 𝑚 ∈ (1...𝑀)) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2))) |
| 103 | 102 | ad2ant2rl 749 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2))) |
| 104 | 98, 103 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π /
2))) |
| 105 | | tanord 26504 |
. . . . . . . . . . . . 13
⊢ ((((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π /
2)) ∧ ((𝑚 ·
π) / 𝑁) ∈ (-(π /
2)(,)(π / 2))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)))) |
| 106 | 101, 104,
105 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)))) |
| 107 | 87, 106 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))) |
| 108 | | tanrpcl 26470 |
. . . . . . . . . . . . 13
⊢ (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) →
(tan‘((𝑘 ·
π) / 𝑁)) ∈
ℝ+) |
| 109 | 100, 108 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈
ℝ+) |
| 110 | | tanrpcl 26470 |
. . . . . . . . . . . . 13
⊢ (((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)) →
(tan‘((𝑚 ·
π) / 𝑁)) ∈
ℝ+) |
| 111 | 103, 110 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈
ℝ+) |
| 112 | | rprege0 13029 |
. . . . . . . . . . . . 13
⊢
((tan‘((𝑘
· π) / 𝑁)) ∈
ℝ+ → ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤
(tan‘((𝑘 ·
π) / 𝑁)))) |
| 113 | | rprege0 13029 |
. . . . . . . . . . . . 13
⊢
((tan‘((𝑚
· π) / 𝑁)) ∈
ℝ+ → ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤
(tan‘((𝑚 ·
π) / 𝑁)))) |
| 114 | | lt2sq 14156 |
. . . . . . . . . . . . 13
⊢
((((tan‘((𝑘
· π) / 𝑁)) ∈
ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))) ∧ ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤
(tan‘((𝑚 ·
π) / 𝑁)))) →
((tan‘((𝑘 ·
π) / 𝑁)) <
(tan‘((𝑚 ·
π) / 𝑁)) ↔
((tan‘((𝑘 ·
π) / 𝑁))↑2) <
((tan‘((𝑚 ·
π) / 𝑁))↑2))) |
| 115 | 112, 113,
114 | syl2an 596 |
. . . . . . . . . . . 12
⊢
(((tan‘((𝑘
· π) / 𝑁)) ∈
ℝ+ ∧ (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+) →
((tan‘((𝑘 ·
π) / 𝑁)) <
(tan‘((𝑚 ·
π) / 𝑁)) ↔
((tan‘((𝑘 ·
π) / 𝑁))↑2) <
((tan‘((𝑚 ·
π) / 𝑁))↑2))) |
| 116 | 109, 111,
115 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2))) |
| 117 | 107, 116 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)) |
| 118 | | rpexpcl 14103 |
. . . . . . . . . . . 12
⊢
(((tan‘((𝑘
· π) / 𝑁)) ∈
ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈
ℝ+) |
| 119 | 109, 5, 118 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈
ℝ+) |
| 120 | | rpexpcl 14103 |
. . . . . . . . . . . 12
⊢
(((tan‘((𝑚
· π) / 𝑁)) ∈
ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈
ℝ+) |
| 121 | 111, 5, 120 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈
ℝ+) |
| 122 | 119, 121 | ltrecd 13074 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2) ↔ (1 /
((tan‘((𝑚 ·
π) / 𝑁))↑2)) <
(1 / ((tan‘((𝑘
· π) / 𝑁))↑2)))) |
| 123 | 117, 122 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 /
((tan‘((𝑘 ·
π) / 𝑁))↑2))) |
| 124 | | oveq1 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → (𝑛 · π) = (𝑚 · π)) |
| 125 | 124 | fvoveq1d 7432 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑚 · π) / 𝑁))) |
| 126 | 125 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑚 · π) / 𝑁))↑-2)) |
| 127 | | ovex 7443 |
. . . . . . . . . . . 12
⊢
((tan‘((𝑚
· π) / 𝑁))↑-2) ∈ V |
| 128 | 126, 57, 127 | fvmpt 6991 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (1...𝑀) → (𝑇‘𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2)) |
| 129 | 128 | ad2antll 729 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2)) |
| 130 | 111 | rpcnd 13058 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℂ) |
| 131 | | 2nn0 12523 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ0 |
| 132 | | expneg 14092 |
. . . . . . . . . . 11
⊢
(((tan‘((𝑚
· π) / 𝑁)) ∈
ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 /
((tan‘((𝑚 ·
π) / 𝑁))↑2))) |
| 133 | 130, 131,
132 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2))) |
| 134 | 129, 133 | eqtrd 2771 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑚) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2))) |
| 135 | | oveq1 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π)) |
| 136 | 135 | fvoveq1d 7432 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁))) |
| 137 | 136 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2)) |
| 138 | | ovex 7443 |
. . . . . . . . . . . 12
⊢
((tan‘((𝑘
· π) / 𝑁))↑-2) ∈ V |
| 139 | 137, 57, 138 | fvmpt 6991 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑀) → (𝑇‘𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2)) |
| 140 | 139 | ad2antrl 728 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2)) |
| 141 | 109 | rpcnd 13058 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ) |
| 142 | | expneg 14092 |
. . . . . . . . . . 11
⊢
(((tan‘((𝑘
· π) / 𝑁)) ∈
ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 /
((tan‘((𝑘 ·
π) / 𝑁))↑2))) |
| 143 | 141, 131,
142 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))) |
| 144 | 140, 143 | eqtrd 2771 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑘) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))) |
| 145 | 123, 134,
144 | 3brtr4d 5156 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇‘𝑚) < (𝑇‘𝑘)) |
| 146 | 145 | an32s 652 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) ∧ 𝑘 < 𝑚) → (𝑇‘𝑚) < (𝑇‘𝑘)) |
| 147 | 146 | ex 412 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 → (𝑇‘𝑚) < (𝑇‘𝑘))) |
| 148 | 59, 60, 61, 63, 66, 147 | eqord2 11773 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → (𝑥 = 𝑦 ↔ (𝑇‘𝑥) = (𝑇‘𝑦))) |
| 149 | 148 | biimprd 248 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → ((𝑇‘𝑥) = (𝑇‘𝑦) → 𝑥 = 𝑦)) |
| 150 | 149 | ralrimivva 3188 |
. . 3
⊢ (𝑀 ∈ ℕ →
∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇‘𝑥) = (𝑇‘𝑦) → 𝑥 = 𝑦)) |
| 151 | | dff13 7252 |
. . 3
⊢ (𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0}) ↔ (𝑇:(1...𝑀)⟶(◡𝑃 “ {0}) ∧ ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇‘𝑥) = (𝑇‘𝑦) → 𝑥 = 𝑦))) |
| 152 | 58, 150, 151 | sylanbrc 583 |
. 2
⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0})) |
| 153 | 48 | simp2d 1143 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ →
(deg‘𝑃) = 𝑀) |
| 154 | | nnne0 12279 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → 𝑀 ≠ 0) |
| 155 | 153, 154 | eqnetrd 3000 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ →
(deg‘𝑃) ≠
0) |
| 156 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑃 = 0𝑝 →
(deg‘𝑃) =
(deg‘0𝑝)) |
| 157 | | dgr0 26225 |
. . . . . . . . . 10
⊢
(deg‘0𝑝) = 0 |
| 158 | 156, 157 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (𝑃 = 0𝑝 →
(deg‘𝑃) =
0) |
| 159 | 158 | necon3i 2965 |
. . . . . . . 8
⊢
((deg‘𝑃) ≠
0 → 𝑃 ≠
0𝑝) |
| 160 | 155, 159 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑃 ≠
0𝑝) |
| 161 | | eqid 2736 |
. . . . . . . 8
⊢ (◡𝑃 “ {0}) = (◡𝑃 “ {0}) |
| 162 | 161 | fta1 26273 |
. . . . . . 7
⊢ ((𝑃 ∈ (Poly‘ℂ)
∧ 𝑃 ≠
0𝑝) → ((◡𝑃 “ {0}) ∈ Fin ∧
(♯‘(◡𝑃 “ {0})) ≤ (deg‘𝑃))) |
| 163 | 49, 160, 162 | syl2anc 584 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → ((◡𝑃 “ {0}) ∈ Fin ∧
(♯‘(◡𝑃 “ {0})) ≤ (deg‘𝑃))) |
| 164 | 163 | simpld 494 |
. . . . 5
⊢ (𝑀 ∈ ℕ → (◡𝑃 “ {0}) ∈ Fin) |
| 165 | | f1domg 8991 |
. . . . 5
⊢ ((◡𝑃 “ {0}) ∈ Fin → (𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0}) → (1...𝑀) ≼ (◡𝑃 “ {0}))) |
| 166 | 164, 152,
165 | sylc 65 |
. . . 4
⊢ (𝑀 ∈ ℕ →
(1...𝑀) ≼ (◡𝑃 “ {0})) |
| 167 | 163 | simprd 495 |
. . . . . 6
⊢ (𝑀 ∈ ℕ →
(♯‘(◡𝑃 “ {0})) ≤ (deg‘𝑃)) |
| 168 | | nnnn0 12513 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
| 169 | | hashfz1 14369 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ (♯‘(1...𝑀)) = 𝑀) |
| 170 | 168, 169 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ →
(♯‘(1...𝑀)) =
𝑀) |
| 171 | 153, 170 | eqtr4d 2774 |
. . . . . 6
⊢ (𝑀 ∈ ℕ →
(deg‘𝑃) =
(♯‘(1...𝑀))) |
| 172 | 167, 171 | breqtrd 5150 |
. . . . 5
⊢ (𝑀 ∈ ℕ →
(♯‘(◡𝑃 “ {0})) ≤
(♯‘(1...𝑀))) |
| 173 | | fzfid 13996 |
. . . . . 6
⊢ (𝑀 ∈ ℕ →
(1...𝑀) ∈
Fin) |
| 174 | | hashdom 14402 |
. . . . . 6
⊢ (((◡𝑃 “ {0}) ∈ Fin ∧ (1...𝑀) ∈ Fin) →
((♯‘(◡𝑃 “ {0})) ≤
(♯‘(1...𝑀))
↔ (◡𝑃 “ {0}) ≼ (1...𝑀))) |
| 175 | 164, 173,
174 | syl2anc 584 |
. . . . 5
⊢ (𝑀 ∈ ℕ →
((♯‘(◡𝑃 “ {0})) ≤
(♯‘(1...𝑀))
↔ (◡𝑃 “ {0}) ≼ (1...𝑀))) |
| 176 | 172, 175 | mpbid 232 |
. . . 4
⊢ (𝑀 ∈ ℕ → (◡𝑃 “ {0}) ≼ (1...𝑀)) |
| 177 | | sbth 9112 |
. . . 4
⊢
(((1...𝑀) ≼
(◡𝑃 “ {0}) ∧ (◡𝑃 “ {0}) ≼ (1...𝑀)) → (1...𝑀) ≈ (◡𝑃 “ {0})) |
| 178 | 166, 176,
177 | syl2anc 584 |
. . 3
⊢ (𝑀 ∈ ℕ →
(1...𝑀) ≈ (◡𝑃 “ {0})) |
| 179 | | f1finf1o 9282 |
. . 3
⊢
(((1...𝑀) ≈
(◡𝑃 “ {0}) ∧ (◡𝑃 “ {0}) ∈ Fin) → (𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(◡𝑃 “ {0}))) |
| 180 | 178, 164,
179 | syl2anc 584 |
. 2
⊢ (𝑀 ∈ ℕ → (𝑇:(1...𝑀)–1-1→(◡𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(◡𝑃 “ {0}))) |
| 181 | 152, 180 | mpbid 232 |
1
⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(◡𝑃 “ {0})) |