MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem4 Structured version   Visualization version   GIF version

Theorem basellem4 25655
Description: Lemma for basel 25661. By basellem3 25654, the expression 𝑃((cot𝑥)↑2) = sin(𝑁𝑥) / (sin𝑥)↑𝑁 goes to zero whenever 𝑥 = 𝑛π / 𝑁 for some 𝑛 ∈ (1...𝑀), so this function enumerates 𝑀 distinct roots of a degree- 𝑀 polynomial, which must therefore be all the roots by fta1 24891. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
Assertion
Ref Expression
basellem4 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)   𝑇(𝑡,𝑗,𝑛)

Proof of Theorem basellem4
Dummy variables 𝑘 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basel.n . . . . . . . . 9 𝑁 = ((2 · 𝑀) + 1)
21basellem1 25652 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)))
3 tanrpcl 25084 . . . . . . . 8 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
42, 3syl 17 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+)
5 2z 12008 . . . . . . . 8 2 ∈ ℤ
6 znegcl 12011 . . . . . . . 8 (2 ∈ ℤ → -2 ∈ ℤ)
75, 6ax-mp 5 . . . . . . 7 -2 ∈ ℤ
8 rpexpcl 13442 . . . . . . 7 (((tan‘((𝑛 · π) / 𝑁)) ∈ ℝ+ ∧ -2 ∈ ℤ) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
94, 7, 8sylancl 588 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ+)
109rpcnd 12427 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ)
11 basel.p . . . . . . . 8 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
121, 11basellem3 25654 . . . . . . 7 ((𝑀 ∈ ℕ ∧ ((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2))) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
132, 12syldan 593 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
14 elfzelz 12902 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℤ)
1514adantl 484 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℤ)
1615zred 12081 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℝ)
17 pire 25038 . . . . . . . . . . . 12 π ∈ ℝ
18 remulcl 10616 . . . . . . . . . . . 12 ((𝑛 ∈ ℝ ∧ π ∈ ℝ) → (𝑛 · π) ∈ ℝ)
1916, 17, 18sylancl 588 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℝ)
2019recnd 10663 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑛 · π) ∈ ℂ)
21 2nn 11704 . . . . . . . . . . . . . . 15 2 ∈ ℕ
22 nnmulcl 11655 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
2321, 22mpan 688 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
2423peano2nnd 11649 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
251, 24eqeltrid 2917 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2625adantr 483 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2726nncnd 11648 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℂ)
2826nnne0d 11681 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ≠ 0)
2920, 27, 28divcan2d 11412 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑁 · ((𝑛 · π) / 𝑁)) = (𝑛 · π))
3029fveq2d 6668 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = (sin‘(𝑛 · π)))
31 sinkpi 25101 . . . . . . . . 9 (𝑛 ∈ ℤ → (sin‘(𝑛 · π)) = 0)
3215, 31syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑛 · π)) = 0)
3330, 32eqtrd 2856 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘(𝑁 · ((𝑛 · π) / 𝑁))) = 0)
3433oveq1d 7165 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘(𝑁 · ((𝑛 · π) / 𝑁))) / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)))
3519, 26nndivred 11685 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((𝑛 · π) / 𝑁) ∈ ℝ)
3635resincld 15490 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℝ)
3736recnd 10663 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ∈ ℂ)
3826nnnn0d 11949 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℕ0)
3937, 38expcld 13504 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ∈ ℂ)
40 sincosq1sgn 25078 . . . . . . . . . . 11 (((𝑛 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
412, 40syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 < (sin‘((𝑛 · π) / 𝑁)) ∧ 0 < (cos‘((𝑛 · π) / 𝑁))))
4241simpld 497 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 0 < (sin‘((𝑛 · π) / 𝑁)))
4342gt0ne0d 11198 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (sin‘((𝑛 · π) / 𝑁)) ≠ 0)
4426nnzd 12080 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑁 ∈ ℤ)
4537, 43, 44expne0d 13510 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((sin‘((𝑛 · π) / 𝑁))↑𝑁) ≠ 0)
4639, 45div0d 11409 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (0 / ((sin‘((𝑛 · π) / 𝑁))↑𝑁)) = 0)
4713, 34, 463eqtrd 2860 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)
481, 11basellem2 25653 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
4948simp1d 1138 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
50 plyf 24782 . . . . . . . 8 (𝑃 ∈ (Poly‘ℂ) → 𝑃:ℂ⟶ℂ)
51 ffn 6508 . . . . . . . 8 (𝑃:ℂ⟶ℂ → 𝑃 Fn ℂ)
5249, 50, 513syl 18 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 Fn ℂ)
5352adantr 483 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → 𝑃 Fn ℂ)
54 fniniseg 6824 . . . . . 6 (𝑃 Fn ℂ → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5553, 54syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}) ↔ (((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℂ ∧ (𝑃‘((tan‘((𝑛 · π) / 𝑁))↑-2)) = 0)))
5610, 47, 55mpbir2and 711 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ (𝑃 “ {0}))
57 basel.t . . . 4 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
5856, 57fmptd 6872 . . 3 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶(𝑃 “ {0}))
59 fveq2 6664 . . . . . 6 (𝑘 = 𝑚 → (𝑇𝑘) = (𝑇𝑚))
60 fveq2 6664 . . . . . 6 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
61 fveq2 6664 . . . . . 6 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
6214zred 12081 . . . . . . 7 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℝ)
6362ssriv 3970 . . . . . 6 (1...𝑀) ⊆ ℝ
649rpred 12425 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (1...𝑀)) → ((tan‘((𝑛 · π) / 𝑁))↑-2) ∈ ℝ)
6564, 57fmptd 6872 . . . . . . 7 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)⟶ℝ)
6665ffvelrnda 6845 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇𝑘) ∈ ℝ)
67 simplr 767 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 < 𝑚)
6863sseli 3962 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℝ)
6968ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑘 ∈ ℝ)
7063sseli 3962 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℝ)
7170ad2antll 727 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑚 ∈ ℝ)
7217a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → π ∈ ℝ)
73 pipos 25040 . . . . . . . . . . . . . . . 16 0 < π
7473a1i 11 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < π)
75 ltmul1 11484 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7669, 71, 72, 74, 75syl112anc 1370 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 ↔ (𝑘 · π) < (𝑚 · π)))
7767, 76mpbid 234 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) < (𝑚 · π))
78 remulcl 10616 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ π ∈ ℝ) → (𝑘 · π) ∈ ℝ)
7969, 17, 78sylancl 588 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 · π) ∈ ℝ)
80 remulcl 10616 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ π ∈ ℝ) → (𝑚 · π) ∈ ℝ)
8171, 17, 80sylancl 588 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑚 · π) ∈ ℝ)
8225ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℕ)
8382nnred 11647 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 𝑁 ∈ ℝ)
8482nngt0d 11680 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → 0 < 𝑁)
85 ltdiv1 11498 . . . . . . . . . . . . . 14 (((𝑘 · π) ∈ ℝ ∧ (𝑚 · π) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8679, 81, 83, 84, 85syl112anc 1370 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) < (𝑚 · π) ↔ ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁)))
8777, 86mpbid 234 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁))
88 neghalfpirx 25046 . . . . . . . . . . . . . . 15 -(π / 2) ∈ ℝ*
89 pirp 25041 . . . . . . . . . . . . . . . . 17 π ∈ ℝ+
90 rphalfcl 12410 . . . . . . . . . . . . . . . . 17 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
91 rpge0 12396 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
9289, 90, 91mp2b 10 . . . . . . . . . . . . . . . 16 0 ≤ (π / 2)
93 halfpire 25044 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
94 le0neg2 11143 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℝ → (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . 16 (0 ≤ (π / 2) ↔ -(π / 2) ≤ 0)
9692, 95mpbi 232 . . . . . . . . . . . . . . 15 -(π / 2) ≤ 0
97 iooss1 12767 . . . . . . . . . . . . . . 15 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
9888, 96, 97mp2an 690 . . . . . . . . . . . . . 14 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
991basellem1 25652 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10099ad2ant2r 745 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
10198, 100sseldi 3964 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
1021basellem1 25652 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑚 ∈ (1...𝑀)) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
103102ad2ant2rl 747 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)))
10498, 103sseldi 3964 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)))
105 tanord 25116 . . . . . . . . . . . . 13 ((((𝑘 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2)) ∧ ((𝑚 · π) / 𝑁) ∈ (-(π / 2)(,)(π / 2))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
106101, 104, 105syl2anc 586 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((𝑘 · π) / 𝑁) < ((𝑚 · π) / 𝑁) ↔ (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁))))
10787, 106mpbid 234 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)))
108 tanrpcl 25084 . . . . . . . . . . . . 13 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
109100, 108syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
110 tanrpcl 25084 . . . . . . . . . . . . 13 (((𝑚 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
111103, 110syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+)
112 rprege0 12398 . . . . . . . . . . . . 13 ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))))
113 rprege0 12398 . . . . . . . . . . . . 13 ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ → ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁))))
114 lt2sq 13492 . . . . . . . . . . . . 13 ((((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑘 · π) / 𝑁))) ∧ ((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ ∧ 0 ≤ (tan‘((𝑚 · π) / 𝑁)))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
115112, 113, 114syl2an 597 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ (tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
116109, 111, 115syl2anc 586 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁)) < (tan‘((𝑚 · π) / 𝑁)) ↔ ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2)))
117107, 116mpbid 234 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2))
118 rpexpcl 13442 . . . . . . . . . . . 12 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
119109, 5, 118sylancl 588 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
120 rpexpcl 13442 . . . . . . . . . . . 12 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
121111, 5, 120sylancl 588 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑2) ∈ ℝ+)
122119, 121ltrecd 12443 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (((tan‘((𝑘 · π) / 𝑁))↑2) < ((tan‘((𝑚 · π) / 𝑁))↑2) ↔ (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
123117, 122mpbid 234 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)) < (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
124 oveq1 7157 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑛 · π) = (𝑚 · π))
125124fvoveq1d 7172 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑚 · π) / 𝑁)))
126125oveq1d 7165 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
127 ovex 7183 . . . . . . . . . . . 12 ((tan‘((𝑚 · π) / 𝑁))↑-2) ∈ V
128126, 57, 127fvmpt 6762 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑀) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
129128ad2antll 727 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = ((tan‘((𝑚 · π) / 𝑁))↑-2))
130111rpcnd 12427 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑚 · π) / 𝑁)) ∈ ℂ)
131 2nn0 11908 . . . . . . . . . . 11 2 ∈ ℕ0
132 expneg 13431 . . . . . . . . . . 11 (((tan‘((𝑚 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
133130, 131, 132sylancl 588 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑚 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
134129, 133eqtrd 2856 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) = (1 / ((tan‘((𝑚 · π) / 𝑁))↑2)))
135 oveq1 7157 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
136135fvoveq1d 7172 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁)))
137136oveq1d 7165 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
138 ovex 7183 . . . . . . . . . . . 12 ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ V
139137, 57, 138fvmpt 6762 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑀) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
140139ad2antrl 726 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
141109rpcnd 12427 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ)
142 expneg 13431 . . . . . . . . . . 11 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
143141, 131, 142sylancl 588 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
144140, 143eqtrd 2856 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑘) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
145123, 134, 1443brtr4d 5090 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑘 < 𝑚) ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑇𝑚) < (𝑇𝑘))
146145an32s 650 . . . . . . 7 (((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) ∧ 𝑘 < 𝑚) → (𝑇𝑚) < (𝑇𝑘))
147146ex 415 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑘 ∈ (1...𝑀) ∧ 𝑚 ∈ (1...𝑀))) → (𝑘 < 𝑚 → (𝑇𝑚) < (𝑇𝑘)))
14859, 60, 61, 63, 66, 147eqord2 11165 . . . . 5 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → (𝑥 = 𝑦 ↔ (𝑇𝑥) = (𝑇𝑦)))
149148biimprd 250 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑀))) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
150149ralrimivva 3191 . . 3 (𝑀 ∈ ℕ → ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
151 dff13 7007 . . 3 (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ (𝑇:(1...𝑀)⟶(𝑃 “ {0}) ∧ ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑀)((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
15258, 150, 151sylanbrc 585 . 2 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1→(𝑃 “ {0}))
15348simp2d 1139 . . . . . . . . 9 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
154 nnne0 11665 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
155153, 154eqnetrd 3083 . . . . . . . 8 (𝑀 ∈ ℕ → (deg‘𝑃) ≠ 0)
156 fveq2 6664 . . . . . . . . . 10 (𝑃 = 0𝑝 → (deg‘𝑃) = (deg‘0𝑝))
157 dgr0 24846 . . . . . . . . . 10 (deg‘0𝑝) = 0
158156, 157syl6eq 2872 . . . . . . . . 9 (𝑃 = 0𝑝 → (deg‘𝑃) = 0)
159158necon3i 3048 . . . . . . . 8 ((deg‘𝑃) ≠ 0 → 𝑃 ≠ 0𝑝)
160155, 159syl 17 . . . . . . 7 (𝑀 ∈ ℕ → 𝑃 ≠ 0𝑝)
161 eqid 2821 . . . . . . . 8 (𝑃 “ {0}) = (𝑃 “ {0})
162161fta1 24891 . . . . . . 7 ((𝑃 ∈ (Poly‘ℂ) ∧ 𝑃 ≠ 0𝑝) → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
16349, 160, 162syl2anc 586 . . . . . 6 (𝑀 ∈ ℕ → ((𝑃 “ {0}) ∈ Fin ∧ (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃)))
164163simpld 497 . . . . 5 (𝑀 ∈ ℕ → (𝑃 “ {0}) ∈ Fin)
165 f1domg 8523 . . . . 5 ((𝑃 “ {0}) ∈ Fin → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) → (1...𝑀) ≼ (𝑃 “ {0})))
166164, 152, 165sylc 65 . . . 4 (𝑀 ∈ ℕ → (1...𝑀) ≼ (𝑃 “ {0}))
167163simprd 498 . . . . . 6 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (deg‘𝑃))
168 nnnn0 11898 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
169 hashfz1 13700 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
170168, 169syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
171153, 170eqtr4d 2859 . . . . . 6 (𝑀 ∈ ℕ → (deg‘𝑃) = (♯‘(1...𝑀)))
172167, 171breqtrd 5084 . . . . 5 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)))
173 fzfid 13335 . . . . . 6 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
174 hashdom 13734 . . . . . 6 (((𝑃 “ {0}) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
175164, 173, 174syl2anc 586 . . . . 5 (𝑀 ∈ ℕ → ((♯‘(𝑃 “ {0})) ≤ (♯‘(1...𝑀)) ↔ (𝑃 “ {0}) ≼ (1...𝑀)))
176172, 175mpbid 234 . . . 4 (𝑀 ∈ ℕ → (𝑃 “ {0}) ≼ (1...𝑀))
177 sbth 8631 . . . 4 (((1...𝑀) ≼ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ≼ (1...𝑀)) → (1...𝑀) ≈ (𝑃 “ {0}))
178166, 176, 177syl2anc 586 . . 3 (𝑀 ∈ ℕ → (1...𝑀) ≈ (𝑃 “ {0}))
179 f1finf1o 8739 . . 3 (((1...𝑀) ≈ (𝑃 “ {0}) ∧ (𝑃 “ {0}) ∈ Fin) → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
180178, 164, 179syl2anc 586 . 2 (𝑀 ∈ ℕ → (𝑇:(1...𝑀)–1-1→(𝑃 “ {0}) ↔ 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0})))
181152, 180mpbid 234 1 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wss 3935  {csn 4560   class class class wbr 5058  cmpt 5138  ccnv 5548  cima 5552   Fn wfn 6344  wf 6345  1-1wf1 6346  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  cen 8500  cdom 8501  Fincfn 8503  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  *cxr 10668   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  2c2 11686  0cn0 11891  cz 11975  +crp 12383  (,)cioo 12732  ...cfz 12886  cexp 13423  Ccbc 13656  chash 13684  Σcsu 15036  sincsin 15411  cosccos 15412  tanctan 15413  πcpi 15414  0𝑝c0p 24264  Polycply 24768  coeffccoe 24770  degcdgr 24771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-tan 15419  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-0p 24265  df-limc 24458  df-dv 24459  df-ply 24772  df-idp 24773  df-coe 24774  df-dgr 24775  df-quot 24874
This theorem is referenced by:  basellem5  25656
  Copyright terms: Public domain W3C validator