Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwsdiagghm | Structured version Visualization version GIF version |
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
pwsdiagghm.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsdiagghm.b | ⊢ 𝐵 = (Base‘𝑅) |
pwsdiagghm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
pwsdiagghm | ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18229 | . . 3 ⊢ (𝑅 ∈ Grp → 𝑅 ∈ Mnd) | |
2 | pwsdiagghm.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
3 | pwsdiagghm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | pwsdiagghm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
5 | 2, 3, 4 | pwsdiagmhm 18114 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌)) |
6 | 1, 5 | sylan 583 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌)) |
7 | 2 | pwsgrp 18332 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ Grp) |
8 | ghmmhmb 18490 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ Grp) → (𝑅 GrpHom 𝑌) = (𝑅 MndHom 𝑌)) | |
9 | 7, 8 | syldan 594 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → (𝑅 GrpHom 𝑌) = (𝑅 MndHom 𝑌)) |
10 | 6, 9 | eleqtrrd 2837 | 1 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {csn 4517 ↦ cmpt 5111 × cxp 5524 ‘cfv 6340 (class class class)co 7173 Basecbs 16589 ↑s cpws 16826 Mndcmnd 18030 MndHom cmhm 18073 Grpcgrp 18222 GrpHom cghm 18476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-of 7428 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-er 8323 df-map 8442 df-ixp 8511 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-sup 8982 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-z 12066 df-dec 12183 df-uz 12328 df-fz 12985 df-struct 16591 df-ndx 16592 df-slot 16593 df-base 16595 df-plusg 16684 df-mulr 16685 df-sca 16687 df-vsca 16688 df-ip 16689 df-tset 16690 df-ple 16691 df-ds 16693 df-hom 16695 df-cco 16696 df-0g 16821 df-prds 16827 df-pws 16829 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-mhm 18075 df-grp 18225 df-minusg 18226 df-ghm 18477 |
This theorem is referenced by: pwsdiagrhm 19691 pwsdiaglmhm 19951 |
Copyright terms: Public domain | W3C validator |