MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1 Structured version   Visualization version   GIF version

Theorem ghmf1 18379
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1.x 𝑋 = (Base‘𝑆)
ghmf1.y 𝑌 = (Base‘𝑇)
ghmf1.z 0 = (0g𝑆)
ghmf1.u 𝑈 = (0g𝑇)
Assertion
Ref Expression
ghmf1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1𝑌 ↔ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇   𝑥,𝑈   𝑥,𝑋   𝑥,𝑌   𝑥, 0

Proof of Theorem ghmf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf1.z . . . . . . . 8 0 = (0g𝑆)
2 ghmf1.u . . . . . . . 8 𝑈 = (0g𝑇)
31, 2ghmid 18356 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = 𝑈)
43ad2antrr 725 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → (𝐹0 ) = 𝑈)
54eqeq2d 2809 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = (𝐹0 ) ↔ (𝐹𝑥) = 𝑈))
6 simplr 768 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋1-1𝑌)
7 simpr 488 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
8 ghmgrp1 18352 . . . . . . . 8 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
98ad2antrr 725 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝑆 ∈ Grp)
10 ghmf1.x . . . . . . . 8 𝑋 = (Base‘𝑆)
1110, 1grpidcl 18123 . . . . . . 7 (𝑆 ∈ Grp → 0𝑋)
129, 11syl 17 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 0𝑋)
13 f1fveq 6998 . . . . . 6 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋0𝑋)) → ((𝐹𝑥) = (𝐹0 ) ↔ 𝑥 = 0 ))
146, 7, 12, 13syl12anc 835 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = (𝐹0 ) ↔ 𝑥 = 0 ))
155, 14bitr3d 284 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = 𝑈𝑥 = 0 ))
1615biimpd 232 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = 𝑈𝑥 = 0 ))
1716ralrimiva 3149 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) → ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 ))
18 ghmf1.y . . . . 5 𝑌 = (Base‘𝑇)
1910, 18ghmf 18354 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
2019adantr 484 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝐹:𝑋𝑌)
21 eqid 2798 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
22 eqid 2798 . . . . . . . . . 10 (-g𝑇) = (-g𝑇)
2310, 21, 22ghmsub 18358 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑦𝑋𝑧𝑋) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
24233expb 1117 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
2524adantlr 714 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
2625eqeq1d 2800 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 ↔ ((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈))
27 fveqeq2 6654 . . . . . . . 8 (𝑥 = (𝑦(-g𝑆)𝑧) → ((𝐹𝑥) = 𝑈 ↔ (𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈))
28 eqeq1 2802 . . . . . . . 8 (𝑥 = (𝑦(-g𝑆)𝑧) → (𝑥 = 0 ↔ (𝑦(-g𝑆)𝑧) = 0 ))
2927, 28imbi12d 348 . . . . . . 7 (𝑥 = (𝑦(-g𝑆)𝑧) → (((𝐹𝑥) = 𝑈𝑥 = 0 ) ↔ ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 )))
30 simplr 768 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 ))
318adantr 484 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝑆 ∈ Grp)
3210, 21grpsubcl 18171 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
33323expb 1117 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
3431, 33sylan 583 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
3529, 30, 34rspcdva 3573 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 ))
3626, 35sylbird 263 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 ))
37 ghmgrp2 18353 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
3837ad2antrr 725 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑇 ∈ Grp)
3919ad2antrr 725 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝐹:𝑋𝑌)
40 simprl 770 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
4139, 40ffvelrnd 6829 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) ∈ 𝑌)
42 simprr 772 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
4339, 42ffvelrnd 6829 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) ∈ 𝑌)
4418, 2, 22grpsubeq0 18177 . . . . . 6 ((𝑇 ∈ Grp ∧ (𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑧) ∈ 𝑌) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 ↔ (𝐹𝑦) = (𝐹𝑧)))
4538, 41, 43, 44syl3anc 1368 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 ↔ (𝐹𝑦) = (𝐹𝑧)))
468ad2antrr 725 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑆 ∈ Grp)
4710, 1, 21grpsubeq0 18177 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → ((𝑦(-g𝑆)𝑧) = 0𝑦 = 𝑧))
4846, 40, 42, 47syl3anc 1368 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(-g𝑆)𝑧) = 0𝑦 = 𝑧))
4936, 45, 483imtr3d 296 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
5049ralrimivva 3156 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → ∀𝑦𝑋𝑧𝑋 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
51 dff13 6991 . . 3 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑧𝑋 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
5220, 50, 51sylanbrc 586 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝐹:𝑋1-1𝑌)
5317, 52impbida 800 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1𝑌 ↔ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wf 6320  1-1wf1 6321  cfv 6324  (class class class)co 7135  Basecbs 16475  0gc0g 16705  Grpcgrp 18095  -gcsg 18097   GrpHom cghm 18347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-ghm 18348
This theorem is referenced by:  cayleylem2  18533  f1rhm0to0ALT  19489  fidomndrnglem  20072  islindf5  20528  pwssplit4  40033
  Copyright terms: Public domain W3C validator