MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1 Structured version   Visualization version   GIF version

Theorem ghmf1 19185
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
Hypotheses
Ref Expression
f1ghm0to0.a 𝐴 = (Base‘𝑅)
f1ghm0to0.b 𝐵 = (Base‘𝑆)
f1ghm0to0.n 𝑁 = (0g𝑅)
f1ghm0to0.0 0 = (0g𝑆)
Assertion
Ref Expression
ghmf1 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆

Proof of Theorem ghmf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ghm0to0.a . . . . . 6 𝐴 = (Base‘𝑅)
2 f1ghm0to0.b . . . . . 6 𝐵 = (Base‘𝑆)
3 f1ghm0to0.n . . . . . 6 𝑁 = (0g𝑅)
4 f1ghm0to0.0 . . . . . 6 0 = (0g𝑆)
51, 2, 3, 4f1ghm0to0 19184 . . . . 5 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
653expa 1118 . . . 4 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
76biimpd 229 . . 3 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
87ralrimiva 3126 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁))
91, 2ghmf 19159 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴𝐵)
109adantr 480 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → 𝐹:𝐴𝐵)
11 eqid 2730 . . . . . . . . . 10 (-g𝑅) = (-g𝑅)
12 eqid 2730 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
131, 11, 12ghmsub 19163 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑦𝐴𝑧𝐴) → (𝐹‘(𝑦(-g𝑅)𝑧)) = ((𝐹𝑦)(-g𝑆)(𝐹𝑧)))
14133expb 1120 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹‘(𝑦(-g𝑅)𝑧)) = ((𝐹𝑦)(-g𝑆)(𝐹𝑧)))
1514adantlr 715 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹‘(𝑦(-g𝑅)𝑧)) = ((𝐹𝑦)(-g𝑆)(𝐹𝑧)))
1615eqeq1d 2732 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹‘(𝑦(-g𝑅)𝑧)) = 0 ↔ ((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 ))
17 fveqeq2 6870 . . . . . . . 8 (𝑥 = (𝑦(-g𝑅)𝑧) → ((𝐹𝑥) = 0 ↔ (𝐹‘(𝑦(-g𝑅)𝑧)) = 0 ))
18 eqeq1 2734 . . . . . . . 8 (𝑥 = (𝑦(-g𝑅)𝑧) → (𝑥 = 𝑁 ↔ (𝑦(-g𝑅)𝑧) = 𝑁))
1917, 18imbi12d 344 . . . . . . 7 (𝑥 = (𝑦(-g𝑅)𝑧) → (((𝐹𝑥) = 0𝑥 = 𝑁) ↔ ((𝐹‘(𝑦(-g𝑅)𝑧)) = 0 → (𝑦(-g𝑅)𝑧) = 𝑁)))
20 simplr 768 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁))
21 ghmgrp1 19157 . . . . . . . . 9 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
2221adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → 𝑅 ∈ Grp)
231, 11grpsubcl 18959 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦𝐴𝑧𝐴) → (𝑦(-g𝑅)𝑧) ∈ 𝐴)
24233expb 1120 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝑦𝐴𝑧𝐴)) → (𝑦(-g𝑅)𝑧) ∈ 𝐴)
2522, 24sylan 580 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝑦(-g𝑅)𝑧) ∈ 𝐴)
2619, 20, 25rspcdva 3592 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹‘(𝑦(-g𝑅)𝑧)) = 0 → (𝑦(-g𝑅)𝑧) = 𝑁))
2716, 26sylbird 260 . . . . 5 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 → (𝑦(-g𝑅)𝑧) = 𝑁))
28 ghmgrp2 19158 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp)
2928ad2antrr 726 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑆 ∈ Grp)
309ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝐹:𝐴𝐵)
31 simprl 770 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
3230, 31ffvelcdmd 7060 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹𝑦) ∈ 𝐵)
33 simprr 772 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
3430, 33ffvelcdmd 7060 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹𝑧) ∈ 𝐵)
352, 4, 12grpsubeq0 18965 . . . . . 6 ((𝑆 ∈ Grp ∧ (𝐹𝑦) ∈ 𝐵 ∧ (𝐹𝑧) ∈ 𝐵) → (((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 ↔ (𝐹𝑦) = (𝐹𝑧)))
3629, 32, 34, 35syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 ↔ (𝐹𝑦) = (𝐹𝑧)))
3721ad2antrr 726 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑅 ∈ Grp)
381, 3, 11grpsubeq0 18965 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑦𝐴𝑧𝐴) → ((𝑦(-g𝑅)𝑧) = 𝑁𝑦 = 𝑧))
3937, 31, 33, 38syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝑦(-g𝑅)𝑧) = 𝑁𝑦 = 𝑧))
4027, 36, 393imtr3d 293 . . . 4 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4140ralrimivva 3181 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → ∀𝑦𝐴𝑧𝐴 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
42 dff13 7232 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐴𝑧𝐴 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
4310, 41, 42sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → 𝐹:𝐴1-1𝐵)
448, 43impbida 800 1 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  Basecbs 17186  0gc0g 17409  Grpcgrp 18872  -gcsg 18874   GrpHom cghm 19151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-ghm 19152
This theorem is referenced by:  cayleylem2  19350  fidomndrnglem  20688  islindf5  21755  asclf1  42526  pwssplit4  43085
  Copyright terms: Public domain W3C validator