Step | Hyp | Ref
| Expression |
1 | | f1ghm0to0.a |
. . . . . 6
⊢ 𝐴 = (Base‘𝑅) |
2 | | f1ghm0to0.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑆) |
3 | | f1ghm0to0.n |
. . . . . 6
⊢ 𝑁 = (0g‘𝑅) |
4 | | f1ghm0to0.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑆) |
5 | 1, 2, 3, 4 | f1ghm0to0 19166 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 𝑁)) |
6 | 5 | 3expa 1115 |
. . . 4
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 𝑁)) |
7 | 6 | biimpd 228 |
. . 3
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) |
8 | 7 | ralrimiva 3138 |
. 2
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) |
9 | 1, 2 | ghmf 19141 |
. . . 4
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴⟶𝐵) |
10 | 9 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) → 𝐹:𝐴⟶𝐵) |
11 | | eqid 2724 |
. . . . . . . . . 10
⊢
(-g‘𝑅) = (-g‘𝑅) |
12 | | eqid 2724 |
. . . . . . . . . 10
⊢
(-g‘𝑆) = (-g‘𝑆) |
13 | 1, 11, 12 | ghmsub 19145 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘(𝑦(-g‘𝑅)𝑧)) = ((𝐹‘𝑦)(-g‘𝑆)(𝐹‘𝑧))) |
14 | 13 | 3expb 1117 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐹‘(𝑦(-g‘𝑅)𝑧)) = ((𝐹‘𝑦)(-g‘𝑆)(𝐹‘𝑧))) |
15 | 14 | adantlr 712 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐹‘(𝑦(-g‘𝑅)𝑧)) = ((𝐹‘𝑦)(-g‘𝑆)(𝐹‘𝑧))) |
16 | 15 | eqeq1d 2726 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘(𝑦(-g‘𝑅)𝑧)) = 0 ↔ ((𝐹‘𝑦)(-g‘𝑆)(𝐹‘𝑧)) = 0 )) |
17 | | fveqeq2 6891 |
. . . . . . . 8
⊢ (𝑥 = (𝑦(-g‘𝑅)𝑧) → ((𝐹‘𝑥) = 0 ↔ (𝐹‘(𝑦(-g‘𝑅)𝑧)) = 0 )) |
18 | | eqeq1 2728 |
. . . . . . . 8
⊢ (𝑥 = (𝑦(-g‘𝑅)𝑧) → (𝑥 = 𝑁 ↔ (𝑦(-g‘𝑅)𝑧) = 𝑁)) |
19 | 17, 18 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = (𝑦(-g‘𝑅)𝑧) → (((𝐹‘𝑥) = 0 → 𝑥 = 𝑁) ↔ ((𝐹‘(𝑦(-g‘𝑅)𝑧)) = 0 → (𝑦(-g‘𝑅)𝑧) = 𝑁))) |
20 | | simplr 766 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) |
21 | | ghmgrp1 19139 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) |
22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) → 𝑅 ∈ Grp) |
23 | 1, 11 | grpsubcl 18944 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦(-g‘𝑅)𝑧) ∈ 𝐴) |
24 | 23 | 3expb 1117 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦(-g‘𝑅)𝑧) ∈ 𝐴) |
25 | 22, 24 | sylan 579 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦(-g‘𝑅)𝑧) ∈ 𝐴) |
26 | 19, 20, 25 | rspcdva 3605 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘(𝑦(-g‘𝑅)𝑧)) = 0 → (𝑦(-g‘𝑅)𝑧) = 𝑁)) |
27 | 16, 26 | sylbird 260 |
. . . . 5
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑦)(-g‘𝑆)(𝐹‘𝑧)) = 0 → (𝑦(-g‘𝑅)𝑧) = 𝑁)) |
28 | | ghmgrp2 19140 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp) |
29 | 28 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑆 ∈ Grp) |
30 | 9 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐹:𝐴⟶𝐵) |
31 | | simprl 768 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
32 | 30, 31 | ffvelcdmd 7078 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐹‘𝑦) ∈ 𝐵) |
33 | | simprr 770 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝐴) |
34 | 30, 33 | ffvelcdmd 7078 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐹‘𝑧) ∈ 𝐵) |
35 | 2, 4, 12 | grpsubeq0 18950 |
. . . . . 6
⊢ ((𝑆 ∈ Grp ∧ (𝐹‘𝑦) ∈ 𝐵 ∧ (𝐹‘𝑧) ∈ 𝐵) → (((𝐹‘𝑦)(-g‘𝑆)(𝐹‘𝑧)) = 0 ↔ (𝐹‘𝑦) = (𝐹‘𝑧))) |
36 | 29, 32, 34, 35 | syl3anc 1368 |
. . . . 5
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑦)(-g‘𝑆)(𝐹‘𝑧)) = 0 ↔ (𝐹‘𝑦) = (𝐹‘𝑧))) |
37 | 21 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑅 ∈ Grp) |
38 | 1, 3, 11 | grpsubeq0 18950 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝑦(-g‘𝑅)𝑧) = 𝑁 ↔ 𝑦 = 𝑧)) |
39 | 37, 31, 33, 38 | syl3anc 1368 |
. . . . 5
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑦(-g‘𝑅)𝑧) = 𝑁 ↔ 𝑦 = 𝑧)) |
40 | 27, 36, 39 | 3imtr3d 293 |
. . . 4
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
41 | 40 | ralrimivva 3192 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
42 | | dff13 7247 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) |
43 | 10, 41, 42 | sylanbrc 582 |
. 2
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) → 𝐹:𝐴–1-1→𝐵) |
44 | 8, 43 | impbida 798 |
1
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁))) |