MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1 Structured version   Visualization version   GIF version

Theorem ghmf1 18387
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1.x 𝑋 = (Base‘𝑆)
ghmf1.y 𝑌 = (Base‘𝑇)
ghmf1.z 0 = (0g𝑆)
ghmf1.u 𝑈 = (0g𝑇)
Assertion
Ref Expression
ghmf1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1𝑌 ↔ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇   𝑥,𝑈   𝑥,𝑋   𝑥,𝑌   𝑥, 0

Proof of Theorem ghmf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf1.z . . . . . . . 8 0 = (0g𝑆)
2 ghmf1.u . . . . . . . 8 𝑈 = (0g𝑇)
31, 2ghmid 18364 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = 𝑈)
43ad2antrr 725 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → (𝐹0 ) = 𝑈)
54eqeq2d 2835 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = (𝐹0 ) ↔ (𝐹𝑥) = 𝑈))
6 simplr 768 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋1-1𝑌)
7 simpr 488 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
8 ghmgrp1 18360 . . . . . . . 8 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
98ad2antrr 725 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝑆 ∈ Grp)
10 ghmf1.x . . . . . . . 8 𝑋 = (Base‘𝑆)
1110, 1grpidcl 18131 . . . . . . 7 (𝑆 ∈ Grp → 0𝑋)
129, 11syl 17 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 0𝑋)
13 f1fveq 7012 . . . . . 6 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋0𝑋)) → ((𝐹𝑥) = (𝐹0 ) ↔ 𝑥 = 0 ))
146, 7, 12, 13syl12anc 835 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = (𝐹0 ) ↔ 𝑥 = 0 ))
155, 14bitr3d 284 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = 𝑈𝑥 = 0 ))
1615biimpd 232 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = 𝑈𝑥 = 0 ))
1716ralrimiva 3177 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) → ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 ))
18 ghmf1.y . . . . 5 𝑌 = (Base‘𝑇)
1910, 18ghmf 18362 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
2019adantr 484 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝐹:𝑋𝑌)
21 eqid 2824 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
22 eqid 2824 . . . . . . . . . 10 (-g𝑇) = (-g𝑇)
2310, 21, 22ghmsub 18366 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑦𝑋𝑧𝑋) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
24233expb 1117 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
2524adantlr 714 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
2625eqeq1d 2826 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 ↔ ((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈))
27 fveqeq2 6670 . . . . . . . 8 (𝑥 = (𝑦(-g𝑆)𝑧) → ((𝐹𝑥) = 𝑈 ↔ (𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈))
28 eqeq1 2828 . . . . . . . 8 (𝑥 = (𝑦(-g𝑆)𝑧) → (𝑥 = 0 ↔ (𝑦(-g𝑆)𝑧) = 0 ))
2927, 28imbi12d 348 . . . . . . 7 (𝑥 = (𝑦(-g𝑆)𝑧) → (((𝐹𝑥) = 𝑈𝑥 = 0 ) ↔ ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 )))
30 simplr 768 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 ))
318adantr 484 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝑆 ∈ Grp)
3210, 21grpsubcl 18179 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
33323expb 1117 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
3431, 33sylan 583 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
3529, 30, 34rspcdva 3611 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 ))
3626, 35sylbird 263 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 ))
37 ghmgrp2 18361 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
3837ad2antrr 725 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑇 ∈ Grp)
3919ad2antrr 725 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝐹:𝑋𝑌)
40 simprl 770 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
4139, 40ffvelrnd 6843 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) ∈ 𝑌)
42 simprr 772 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
4339, 42ffvelrnd 6843 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) ∈ 𝑌)
4418, 2, 22grpsubeq0 18185 . . . . . 6 ((𝑇 ∈ Grp ∧ (𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑧) ∈ 𝑌) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 ↔ (𝐹𝑦) = (𝐹𝑧)))
4538, 41, 43, 44syl3anc 1368 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 ↔ (𝐹𝑦) = (𝐹𝑧)))
468ad2antrr 725 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑆 ∈ Grp)
4710, 1, 21grpsubeq0 18185 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → ((𝑦(-g𝑆)𝑧) = 0𝑦 = 𝑧))
4846, 40, 42, 47syl3anc 1368 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(-g𝑆)𝑧) = 0𝑦 = 𝑧))
4936, 45, 483imtr3d 296 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
5049ralrimivva 3186 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → ∀𝑦𝑋𝑧𝑋 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
51 dff13 7005 . . 3 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑧𝑋 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
5220, 50, 51sylanbrc 586 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝐹:𝑋1-1𝑌)
5317, 52impbida 800 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1𝑌 ↔ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133  wf 6339  1-1wf1 6340  cfv 6343  (class class class)co 7149  Basecbs 16483  0gc0g 16713  Grpcgrp 18103  -gcsg 18105   GrpHom cghm 18355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-ghm 18356
This theorem is referenced by:  cayleylem2  18541  f1rhm0to0ALT  19496  fidomndrnglem  20079  islindf5  20983  pwssplit4  39949
  Copyright terms: Public domain W3C validator