MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1 Structured version   Visualization version   GIF version

Theorem ghmf1 18778
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1.x 𝑋 = (Base‘𝑆)
ghmf1.y 𝑌 = (Base‘𝑇)
ghmf1.z 0 = (0g𝑆)
ghmf1.u 𝑈 = (0g𝑇)
Assertion
Ref Expression
ghmf1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1𝑌 ↔ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇   𝑥,𝑈   𝑥,𝑋   𝑥,𝑌   𝑥, 0

Proof of Theorem ghmf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf1.z . . . . . . . 8 0 = (0g𝑆)
2 ghmf1.u . . . . . . . 8 𝑈 = (0g𝑇)
31, 2ghmid 18755 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = 𝑈)
43ad2antrr 722 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → (𝐹0 ) = 𝑈)
54eqeq2d 2749 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = (𝐹0 ) ↔ (𝐹𝑥) = 𝑈))
6 simplr 765 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋1-1𝑌)
7 simpr 484 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
8 ghmgrp1 18751 . . . . . . . 8 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
98ad2antrr 722 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝑆 ∈ Grp)
10 ghmf1.x . . . . . . . 8 𝑋 = (Base‘𝑆)
1110, 1grpidcl 18522 . . . . . . 7 (𝑆 ∈ Grp → 0𝑋)
129, 11syl 17 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 0𝑋)
13 f1fveq 7116 . . . . . 6 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋0𝑋)) → ((𝐹𝑥) = (𝐹0 ) ↔ 𝑥 = 0 ))
146, 7, 12, 13syl12anc 833 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = (𝐹0 ) ↔ 𝑥 = 0 ))
155, 14bitr3d 280 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = 𝑈𝑥 = 0 ))
1615biimpd 228 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = 𝑈𝑥 = 0 ))
1716ralrimiva 3107 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) → ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 ))
18 ghmf1.y . . . . 5 𝑌 = (Base‘𝑇)
1910, 18ghmf 18753 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
2019adantr 480 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝐹:𝑋𝑌)
21 eqid 2738 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
22 eqid 2738 . . . . . . . . . 10 (-g𝑇) = (-g𝑇)
2310, 21, 22ghmsub 18757 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑦𝑋𝑧𝑋) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
24233expb 1118 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
2524adantlr 711 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
2625eqeq1d 2740 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 ↔ ((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈))
27 fveqeq2 6765 . . . . . . . 8 (𝑥 = (𝑦(-g𝑆)𝑧) → ((𝐹𝑥) = 𝑈 ↔ (𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈))
28 eqeq1 2742 . . . . . . . 8 (𝑥 = (𝑦(-g𝑆)𝑧) → (𝑥 = 0 ↔ (𝑦(-g𝑆)𝑧) = 0 ))
2927, 28imbi12d 344 . . . . . . 7 (𝑥 = (𝑦(-g𝑆)𝑧) → (((𝐹𝑥) = 𝑈𝑥 = 0 ) ↔ ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 )))
30 simplr 765 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 ))
318adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝑆 ∈ Grp)
3210, 21grpsubcl 18570 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
33323expb 1118 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
3431, 33sylan 579 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
3529, 30, 34rspcdva 3554 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 ))
3626, 35sylbird 259 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 ))
37 ghmgrp2 18752 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
3837ad2antrr 722 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑇 ∈ Grp)
3919ad2antrr 722 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝐹:𝑋𝑌)
40 simprl 767 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
4139, 40ffvelrnd 6944 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) ∈ 𝑌)
42 simprr 769 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
4339, 42ffvelrnd 6944 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) ∈ 𝑌)
4418, 2, 22grpsubeq0 18576 . . . . . 6 ((𝑇 ∈ Grp ∧ (𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑧) ∈ 𝑌) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 ↔ (𝐹𝑦) = (𝐹𝑧)))
4538, 41, 43, 44syl3anc 1369 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 ↔ (𝐹𝑦) = (𝐹𝑧)))
468ad2antrr 722 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑆 ∈ Grp)
4710, 1, 21grpsubeq0 18576 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → ((𝑦(-g𝑆)𝑧) = 0𝑦 = 𝑧))
4846, 40, 42, 47syl3anc 1369 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(-g𝑆)𝑧) = 0𝑦 = 𝑧))
4936, 45, 483imtr3d 292 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
5049ralrimivva 3114 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → ∀𝑦𝑋𝑧𝑋 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
51 dff13 7109 . . 3 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑧𝑋 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
5220, 50, 51sylanbrc 582 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝐹:𝑋1-1𝑌)
5317, 52impbida 797 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1𝑌 ↔ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  Basecbs 16840  0gc0g 17067  Grpcgrp 18492  -gcsg 18494   GrpHom cghm 18746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-ghm 18747
This theorem is referenced by:  cayleylem2  18936  f1rhm0to0ALT  19900  fidomndrnglem  20491  islindf5  20956  pwssplit4  40830
  Copyright terms: Public domain W3C validator