MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1 Structured version   Visualization version   GIF version

Theorem ghmf1 18389
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1.x 𝑋 = (Base‘𝑆)
ghmf1.y 𝑌 = (Base‘𝑇)
ghmf1.z 0 = (0g𝑆)
ghmf1.u 𝑈 = (0g𝑇)
Assertion
Ref Expression
ghmf1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1𝑌 ↔ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇   𝑥,𝑈   𝑥,𝑋   𝑥,𝑌   𝑥, 0

Proof of Theorem ghmf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf1.z . . . . . . . 8 0 = (0g𝑆)
2 ghmf1.u . . . . . . . 8 𝑈 = (0g𝑇)
31, 2ghmid 18366 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹0 ) = 𝑈)
43ad2antrr 724 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → (𝐹0 ) = 𝑈)
54eqeq2d 2834 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = (𝐹0 ) ↔ (𝐹𝑥) = 𝑈))
6 simplr 767 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋1-1𝑌)
7 simpr 487 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
8 ghmgrp1 18362 . . . . . . . 8 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
98ad2antrr 724 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 𝑆 ∈ Grp)
10 ghmf1.x . . . . . . . 8 𝑋 = (Base‘𝑆)
1110, 1grpidcl 18133 . . . . . . 7 (𝑆 ∈ Grp → 0𝑋)
129, 11syl 17 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → 0𝑋)
13 f1fveq 7022 . . . . . 6 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋0𝑋)) → ((𝐹𝑥) = (𝐹0 ) ↔ 𝑥 = 0 ))
146, 7, 12, 13syl12anc 834 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = (𝐹0 ) ↔ 𝑥 = 0 ))
155, 14bitr3d 283 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = 𝑈𝑥 = 0 ))
1615biimpd 231 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) ∧ 𝑥𝑋) → ((𝐹𝑥) = 𝑈𝑥 = 0 ))
1716ralrimiva 3184 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1𝑌) → ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 ))
18 ghmf1.y . . . . 5 𝑌 = (Base‘𝑇)
1910, 18ghmf 18364 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
2019adantr 483 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝐹:𝑋𝑌)
21 eqid 2823 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
22 eqid 2823 . . . . . . . . . 10 (-g𝑇) = (-g𝑇)
2310, 21, 22ghmsub 18368 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑦𝑋𝑧𝑋) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
24233expb 1116 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
2524adantlr 713 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(-g𝑆)𝑧)) = ((𝐹𝑦)(-g𝑇)(𝐹𝑧)))
2625eqeq1d 2825 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 ↔ ((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈))
27 fveqeq2 6681 . . . . . . . 8 (𝑥 = (𝑦(-g𝑆)𝑧) → ((𝐹𝑥) = 𝑈 ↔ (𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈))
28 eqeq1 2827 . . . . . . . 8 (𝑥 = (𝑦(-g𝑆)𝑧) → (𝑥 = 0 ↔ (𝑦(-g𝑆)𝑧) = 0 ))
2927, 28imbi12d 347 . . . . . . 7 (𝑥 = (𝑦(-g𝑆)𝑧) → (((𝐹𝑥) = 𝑈𝑥 = 0 ) ↔ ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 )))
30 simplr 767 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 ))
318adantr 483 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝑆 ∈ Grp)
3210, 21grpsubcl 18181 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
33323expb 1116 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
3431, 33sylan 582 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(-g𝑆)𝑧) ∈ 𝑋)
3529, 30, 34rspcdva 3627 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹‘(𝑦(-g𝑆)𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 ))
3626, 35sylbird 262 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 → (𝑦(-g𝑆)𝑧) = 0 ))
37 ghmgrp2 18363 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
3837ad2antrr 724 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑇 ∈ Grp)
3919ad2antrr 724 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝐹:𝑋𝑌)
40 simprl 769 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
4139, 40ffvelrnd 6854 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) ∈ 𝑌)
42 simprr 771 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
4339, 42ffvelrnd 6854 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) ∈ 𝑌)
4418, 2, 22grpsubeq0 18187 . . . . . 6 ((𝑇 ∈ Grp ∧ (𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑧) ∈ 𝑌) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 ↔ (𝐹𝑦) = (𝐹𝑧)))
4538, 41, 43, 44syl3anc 1367 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐹𝑦)(-g𝑇)(𝐹𝑧)) = 𝑈 ↔ (𝐹𝑦) = (𝐹𝑧)))
468ad2antrr 724 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → 𝑆 ∈ Grp)
4710, 1, 21grpsubeq0 18187 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → ((𝑦(-g𝑆)𝑧) = 0𝑦 = 𝑧))
4846, 40, 42, 47syl3anc 1367 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(-g𝑆)𝑧) = 0𝑦 = 𝑧))
4936, 45, 483imtr3d 295 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
5049ralrimivva 3193 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → ∀𝑦𝑋𝑧𝑋 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
51 dff13 7015 . . 3 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑧𝑋 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
5220, 50, 51sylanbrc 585 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )) → 𝐹:𝑋1-1𝑌)
5317, 52impbida 799 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1𝑌 ↔ ∀𝑥𝑋 ((𝐹𝑥) = 𝑈𝑥 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wf 6353  1-1wf1 6354  cfv 6357  (class class class)co 7158  Basecbs 16485  0gc0g 16715  Grpcgrp 18105  -gcsg 18107   GrpHom cghm 18357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-ghm 18358
This theorem is referenced by:  cayleylem2  18543  f1rhm0to0ALT  19496  fidomndrnglem  20081  islindf5  20985  pwssplit4  39696
  Copyright terms: Public domain W3C validator