Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivmptf | Structured version Visualization version GIF version |
Description: The quotient of two functions into the complex numbers is a function into the complex numbers. (Contributed by AV, 16-May-2020.) |
Ref | Expression |
---|---|
fdivmptf | ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐹:𝐴⟶ℂ) | |
2 | suppssdm 8055 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ dom 𝐺 | |
3 | fdm 6654 | . . . . . . . 8 ⊢ (𝐺:𝐴⟶ℂ → dom 𝐺 = 𝐴) | |
4 | 2, 3 | sseqtrid 3983 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℂ → (𝐺 supp 0) ⊆ 𝐴) |
5 | 4 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐺 supp 0) ⊆ 𝐴) |
6 | 5 | sselda 3931 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝑥 ∈ 𝐴) |
7 | 1, 6 | ffvelcdmd 7012 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐹‘𝑥) ∈ ℂ) |
8 | simpl2 1191 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐺:𝐴⟶ℂ) | |
9 | 8, 6 | ffvelcdmd 7012 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ∈ ℂ) |
10 | ffn 6645 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴) | |
11 | 10 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) |
12 | simp3 1137 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
13 | 0cnd 11061 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 0 ∈ ℂ) | |
14 | elsuppfn 8049 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 0 ∈ ℂ) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) | |
15 | 11, 12, 13, 14 | syl3anc 1370 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) |
16 | 15 | simplbda 500 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ≠ 0) |
17 | 7, 9, 16 | divcld 11844 | . . 3 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ ℂ) |
18 | 17 | fmpttd 7039 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℂ) |
19 | fdivmpt 46226 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
20 | 19 | feq1d 6630 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ ↔ (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℂ)) |
21 | 18, 20 | mpbird 256 | 1 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 ≠ wne 2940 ⊆ wss 3897 ↦ cmpt 5172 dom cdm 5614 Fn wfn 6468 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 supp csupp 8039 ℂcc 10962 0cc0 10964 / cdiv 11725 /f cfdiv 46223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-supp 8040 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-fdiv 46224 |
This theorem is referenced by: fdivpm 46229 |
Copyright terms: Public domain | W3C validator |