Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivmptf Structured version   Visualization version   GIF version

Theorem fdivmptf 48275
Description: The quotient of two functions into the complex numbers is a function into the complex numbers. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
fdivmptf ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ)

Proof of Theorem fdivmptf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐹:𝐴⟶ℂ)
2 suppssdm 8218 . . . . . . . 8 (𝐺 supp 0) ⊆ dom 𝐺
3 fdm 6756 . . . . . . . 8 (𝐺:𝐴⟶ℂ → dom 𝐺 = 𝐴)
42, 3sseqtrid 4061 . . . . . . 7 (𝐺:𝐴⟶ℂ → (𝐺 supp 0) ⊆ 𝐴)
543ad2ant2 1134 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 supp 0) ⊆ 𝐴)
65sselda 4008 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝑥𝐴)
71, 6ffvelcdmd 7119 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐹𝑥) ∈ ℂ)
8 simpl2 1192 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐺:𝐴⟶ℂ)
98, 6ffvelcdmd 7119 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺𝑥) ∈ ℂ)
10 ffn 6747 . . . . . . 7 (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴)
11103ad2ant2 1134 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
12 simp3 1138 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐴𝑉)
13 0cnd 11283 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 0 ∈ ℂ)
14 elsuppfn 8211 . . . . . 6 ((𝐺 Fn 𝐴𝐴𝑉 ∧ 0 ∈ ℂ) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ≠ 0)))
1511, 12, 13, 14syl3anc 1371 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ≠ 0)))
1615simplbda 499 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺𝑥) ≠ 0)
177, 9, 16divcld 12070 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹𝑥) / (𝐺𝑥)) ∈ ℂ)
1817fmpttd 7149 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))):(𝐺 supp 0)⟶ℂ)
19 fdivmpt 48274 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
2019feq1d 6732 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ ↔ (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))):(𝐺 supp 0)⟶ℂ))
2118, 20mpbird 257 1 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2946  wss 3976  cmpt 5249  dom cdm 5700   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  cc 11182  0cc0 11184   / cdiv 11947   /f cfdiv 48271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-supp 8202  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-fdiv 48272
This theorem is referenced by:  fdivpm  48277
  Copyright terms: Public domain W3C validator