Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivmptf | Structured version Visualization version GIF version |
Description: The quotient of two functions into the complex numbers is a function into the complex numbers. (Contributed by AV, 16-May-2020.) |
Ref | Expression |
---|---|
fdivmptf | ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐹:𝐴⟶ℂ) | |
2 | suppssdm 7993 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ dom 𝐺 | |
3 | fdm 6609 | . . . . . . . 8 ⊢ (𝐺:𝐴⟶ℂ → dom 𝐺 = 𝐴) | |
4 | 2, 3 | sseqtrid 3973 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℂ → (𝐺 supp 0) ⊆ 𝐴) |
5 | 4 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐺 supp 0) ⊆ 𝐴) |
6 | 5 | sselda 3921 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝑥 ∈ 𝐴) |
7 | 1, 6 | ffvelrnd 6962 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐹‘𝑥) ∈ ℂ) |
8 | simpl2 1191 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐺:𝐴⟶ℂ) | |
9 | 8, 6 | ffvelrnd 6962 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ∈ ℂ) |
10 | ffn 6600 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴) | |
11 | 10 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) |
12 | simp3 1137 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
13 | 0cnd 10968 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 0 ∈ ℂ) | |
14 | elsuppfn 7987 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 0 ∈ ℂ) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) | |
15 | 11, 12, 13, 14 | syl3anc 1370 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) |
16 | 15 | simplbda 500 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ≠ 0) |
17 | 7, 9, 16 | divcld 11751 | . . 3 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ ℂ) |
18 | 17 | fmpttd 6989 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℂ) |
19 | fdivmpt 45886 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
20 | 19 | feq1d 6585 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ ↔ (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℂ)) |
21 | 18, 20 | mpbird 256 | 1 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ↦ cmpt 5157 dom cdm 5589 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 ℂcc 10869 0cc0 10871 / cdiv 11632 /f cfdiv 45883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-supp 7978 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-fdiv 45884 |
This theorem is referenced by: fdivpm 45889 |
Copyright terms: Public domain | W3C validator |