![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivmptf | Structured version Visualization version GIF version |
Description: The quotient of two functions into the complex numbers is a function into the complex numbers. (Contributed by AV, 16-May-2020.) |
Ref | Expression |
---|---|
fdivmptf | ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1248 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐹:𝐴⟶ℂ) | |
2 | suppssdm 7572 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ dom 𝐺 | |
3 | fdm 6286 | . . . . . . . 8 ⊢ (𝐺:𝐴⟶ℂ → dom 𝐺 = 𝐴) | |
4 | 2, 3 | syl5sseq 3878 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℂ → (𝐺 supp 0) ⊆ 𝐴) |
5 | 4 | 3ad2ant2 1170 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐺 supp 0) ⊆ 𝐴) |
6 | 5 | sselda 3827 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝑥 ∈ 𝐴) |
7 | 1, 6 | ffvelrnd 6609 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐹‘𝑥) ∈ ℂ) |
8 | simpl2 1250 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐺:𝐴⟶ℂ) | |
9 | 8, 6 | ffvelrnd 6609 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ∈ ℂ) |
10 | ffn 6278 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴) | |
11 | 10 | 3ad2ant2 1170 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) |
12 | simp3 1174 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
13 | 0cnd 10349 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 0 ∈ ℂ) | |
14 | elsuppfn 7567 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 0 ∈ ℂ) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) | |
15 | 11, 12, 13, 14 | syl3anc 1496 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) |
16 | 15 | simplbda 495 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ≠ 0) |
17 | 7, 9, 16 | divcld 11127 | . . 3 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ ℂ) |
18 | 17 | fmpttd 6634 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℂ) |
19 | fdivmpt 43181 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
20 | 19 | feq1d 6263 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ ↔ (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℂ)) |
21 | 18, 20 | mpbird 249 | 1 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 ∈ wcel 2166 ≠ wne 2999 ⊆ wss 3798 ↦ cmpt 4952 dom cdm 5342 Fn wfn 6118 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 supp csupp 7559 ℂcc 10250 0cc0 10252 / cdiv 11009 /f cfdiv 43178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-po 5263 df-so 5264 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-supp 7560 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-fdiv 43179 |
This theorem is referenced by: fdivpm 43184 |
Copyright terms: Public domain | W3C validator |