![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fge0iccre | Structured version Visualization version GIF version |
Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fge0iccre.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
fge0iccre.2 | ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
Ref | Expression |
---|---|
fge0iccre | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fge0iccre.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
2 | fge0iccre.2 | . . 3 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) | |
3 | 1, 2 | fge0iccico 46354 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
4 | rge0ssre 13502 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (0[,)+∞) ⊆ ℝ) |
6 | 3, 5 | fssd 6761 | 1 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ⊆ wss 3966 ran crn 5694 ⟶wf 6565 (class class class)co 7438 ℝcr 11161 0cc0 11162 +∞cpnf 11299 [,)cico 13395 [,]cicc 13396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-addrcl 11223 ax-rnegex 11233 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-ico 13399 df-icc 13400 |
This theorem is referenced by: sge0fsum 46371 |
Copyright terms: Public domain | W3C validator |