| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fge0iccre | Structured version Visualization version GIF version | ||
| Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| fge0iccre.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| fge0iccre.2 | ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
| Ref | Expression |
|---|---|
| fge0iccre | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fge0iccre.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 2 | fge0iccre.2 | . . 3 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) | |
| 3 | 1, 2 | fge0iccico 46482 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
| 4 | rge0ssre 13366 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (0[,)+∞) ⊆ ℝ) |
| 6 | 3, 5 | fssd 6676 | 1 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ⊆ wss 3899 ran crn 5622 ⟶wf 6485 (class class class)co 7355 ℝcr 11015 0cc0 11016 +∞cpnf 11153 [,)cico 13257 [,]cicc 13258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-addrcl 11077 ax-rnegex 11087 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-ico 13261 df-icc 13262 |
| This theorem is referenced by: sge0fsum 46499 |
| Copyright terms: Public domain | W3C validator |