| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fge0iccre | Structured version Visualization version GIF version | ||
| Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| fge0iccre.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| fge0iccre.2 | ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
| Ref | Expression |
|---|---|
| fge0iccre | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fge0iccre.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 2 | fge0iccre.2 | . . 3 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) | |
| 3 | 1, 2 | fge0iccico 46341 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
| 4 | rge0ssre 13430 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (0[,)+∞) ⊆ ℝ) |
| 6 | 3, 5 | fssd 6712 | 1 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⊆ wss 3922 ran crn 5647 ⟶wf 6515 (class class class)co 7394 ℝcr 11085 0cc0 11086 +∞cpnf 11223 [,)cico 13321 [,]cicc 13322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-addrcl 11147 ax-rnegex 11157 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-po 5554 df-so 5555 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-ico 13325 df-icc 13326 |
| This theorem is referenced by: sge0fsum 46358 |
| Copyright terms: Public domain | W3C validator |