Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rge0ssre | Structured version Visualization version GIF version |
Description: Nonnegative real numbers are real numbers. (Contributed by Thierry Arnoux, 9-Sep-2018.) (Proof shortened by AV, 8-Sep-2019.) |
Ref | Expression |
---|---|
rge0ssre | ⊢ (0[,)+∞) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrege0 13186 | . . 3 ⊢ (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) | |
2 | 1 | simplbi 498 | . 2 ⊢ (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℝ) |
3 | 2 | ssriv 3925 | 1 ⊢ (0[,)+∞) ⊆ ℝ |
Copyright terms: Public domain | W3C validator |